
New Features in the PAPI 5.0 Release

Vince Weaver

vweaver1@eecs.utk.edu

24 August 2012

Abstract

The PAPI 5.0 release adds new functionality and cleans up old interfaces. We have attempted

to preserve backwards compatibility as much as possible, but some code that uses PAPI may

break in the transition from PAPI 4.x to PAPI 5.

This document describes the major changes introduced in PAPI 5.0 and gives information

on how to properly migrate code to the new interfaces.

1

Contents

1 Background 5

1.1 Changes that may break the API . 5

1.2 Changes that break components . 5

2 Changes to the Component Development Interface (CDI) 6

2.1 Changes to .cmp info . 6

2.1.1 Removing Operating System Specific fields from .cmp info 6

2.1.2 Component Names in .cmp info . 7

2.1.3 Processor Specific fields in .cmp info . 8

2.1.4 Other Additions to .cmp info . 8

2.2 Changes to papi vector t Function Pointers . 9

2.2.1 Removing Operating System hooks from papi vector t 9

2.2.2 Removing Bipartite Map Functions . 10

2.2.3 Native Event Conversion Routines . 10

2.3 Substrate to Component Rename . 11

2.3.1 Removing Obsolete Functions . 11

3 New/Modified PAPI interface functions 11

3.1 PAPI add named event() . 12

3.2 PAPI remove named event(), PAPI query named event() 12

3.3 PAPI get event component() . 12

3.4 PAPI enum cmp event() . 13

3.5 PAPI get component index() . 13

3.6 PAPI disable component() . 13

4 Extensions to PAPI event info t 14

4.1 PAPI event info t Layout . 14

4.2 Enhanced Event Info . 14

4.2.1 Specifying Extended Value Types . 15

4.2.2 Units . 15

4.2.3 Component Index . 15

4.2.4 Location . 15

4.2.5 Value Type . 16

4.2.6 Timescope . 16

4.2.7 Update Type and Frequency . 16

2

5 Event Enumeration Issues 16

6 Removing the 16-component limit 17

7 Error Propagation 19

8 Virtualized Events (PAPI-V) 19

9 Better CPU Frequency Support 20

10 Component Detection 20

11 Locking Changes 21

12 Other Additions/Removals/Changes 21

12.1 New Components . 21

12.2 Removed Components . 22

12.3 Removed Windows Support . 22

12.4 Removed Java Support . 22

12.5 New Operating Systems . 22

12.6 New Processor Support . 22

12.7 New Pre-defined Events . 23

12.8 Component Name Prepending . 23

12.9 Improved Error Handling . 23

13 Items not making it into PAPI 5 23

13.1 Uncore Support . 23

13.2 Further cmp info t field removals . 23

13.3 Official CDI interface . 24

13.4 get memory info vector . 24

13.5 Component Specific Settings . 24

13.6 PAPI enum components() . 24

13.7 More return values . 25

13.8 Event Fields that take a Range . 25

13.9 Privileged Events . 26

13.10Extended Sampling Interfaces . 26

13.11Extended User-events . 26

13.12Distinguish Events that can be Sampled . 26

13.13More Code Coverage . 26

3

13.14Removing Obsolete Components . 26

13.15Improving Test Infrastructure . 27

13.16Enhanced Virtualized Timer Support . 27

13.17Advanced Frequency Scaling Support . 27

13.18Finer-grained user/kernel support . 27

13.19perf event rdpmc support . 27

13.20Watt’s Up Component . 28

13.21PAPI FP OPS . 28

13.22Enhanced Multiplexing Support . 28

13.23Component Presets . 28

13.24Avoiding High-Latency Component Initialization . 28

13.25Mitigating Long Latency Reads . 28

13.26Multiple perfcounter implementations . 29

13.27PAPI get OS info call . 29

13.28Multiple users of itimers . 29

13.29Fixes for RAPL component . 29

13.30Always enable inherit . 29

13.31New Pre-defined Events . 29

13.32Better Build Environment . 29

13.33Other Language Bindings . 30

13.34Parallel Library Components . 30

14 Conclusion 30

15 References 30

4

1 Background

The PAPI 5.0 release enhances the PAPI library while removing some of the limitations in the

previous PAPI 4.x API/ABI. Many changes were also made in the PAPI-C [2] component interface

(also known as the Component Development Interface, or CDI).

Many of the changes break the ABI, meaning that binaries linked against 4.x versions of PAPI

will not link against the new version. That is why we bumped the major version number to 5.0.

We attempted to minimize the API breakage. This means that hopefully any code that compiled

against PAPI 4.x will compile against 5.0 with no changes. See Section 1.1 for information on

changes that might break the API.

We encountered many limitations with the PAPI-C CDI interface. We have majorly overhauled

the interfaces used by components; unfortunately this means that any component maintained out-

side of the PAPI source code tree will likely need changes to work with PAPI 5.0. See Section 1.2

for a summary of these changes.

1.1 Changes that may break the API

We attempt to remain as backwards compatible as possible. Most code that worked with PAPI 4.x

should work with PAPI 5.0 with no code changes.

If your code does break, please report this to the PAPI mailing list and we will do our best to

address the problem.

PAPI COMPONENT AND MASK and PAPI COMPONENT MASK have been removed as they are no-longer

necessary due to the removal of the 16-component limit.

Various fields in the .cmp info structure have been removed. Since we return this internal

structure via the PAPI get component info() call, any code that accessed obscure values in this

structure may break.

PAPI perror() has been changed to match the C-library style API. Previously PAPI perror()

took 3 arguments and wrote the results to a string, which then had to be printed. The new interface

only takes one argument, a string, which is directly passed to stderr.

1.2 Changes that break components

We have made many changes to the CDI to address limitations in the PAPI 4.x interface. If you

maintain a component you will probably need to make changes to your code. See Section 2 for a

list of all changes that were made.

5

2 Changes to the Component Development Interface (CDI)

The PAPI-C Component Development Interface (CDI) provides an infrastructure for creating mod-

ularized “components” that add functionality to PAPI.

The CDI interface was originally just the hooks needed by the Linux/perfctr substrate. There-

fore the fields and function pointers exported did not necessarily line up with the needs of other

modules. Specifically, many operating-system specific interfaces were enabled which no module

should really need.

In PAPI 5.0 we cleaned up the interface, removed many function pointers that no one was using

(or that no one should have been using), and added a lot of extra functionality.

The CDI consists of two parts. The first is the .cmp info structure that contains info on a

component. The second is the function vector that contains the interfaces used by the component.

The following changes should be made to update a component from 4.x to 5.0.

Rename the function points .init to .init thread .shutdown to .shutdown thread .init substrate

to .init component .shutdown substrate to .shutdown component

Modify your .name field to match your directory name.

Rename all PAPI ESBSTR to PAPI ECMP

Add a .description field.

Make sure the .allocate registers function returns PAPI OK for success (previously it returned

1 for success / 0 for failure).

Make sure to include papi vector.h in your component, as papi internal.h does not include it

for you anymore.

Remove any use of the PAPI MPX DEF DEG define. If you are setting the .num mpx cntrs field,

and your component does not support multiplexing, then just set it to the same value as .num cntrs

2.1 Changes to .cmp info

The .cmp info structure is directly exposed as ABI to the user via the PAPI get component info(),

so any changes made here will break the ABI and change the API (although the API changes can

be made in a way that preserves backward compatibility).

2.1.1 Removing Operating System Specific fields from .cmp info

In PAPI 4.x the 0th component (usually the hardware performance counter substrate: either

perf event, perfctr, or perfmon2 on Linux) had a special meaning. Its component fields held var-

ious OS specific information, such as kernel version numbers, POSIX timer values, etc. Other

components could set these values in their own .cmp info structure, but these were ignored.

6

With PAPI 5.0 these OS-specific fields are removed from the .cmp info structure and placed

in their own structure, papi os info of type PAPI os info t. This allows the OS specific values,

of which there only need to be one copy, to stand alone.

In the OS split, the following was done:

• The following fields are removed from .cmp info and put into a new PAPI os info t struc-

ture: itimer sig, itimer num, itimer ns, itimer res ns, clock ticks, os version.

• The following new fields are included in PAPI os info t: name, version.

• A new int papi init os(void) function is added for each supported Operating System

that initializes the new PAPI os info t structure.

• All uses of papi hwd[0]->cmp info are turned into papi os info

In addition, some padding was added to the end of papi os info for future expansion.

Most of the moved fields involve the POSIX itimers. You only get three per process; currently

values set in the component itimer fields were likely ignored as usually only the ones in component[0]

were referenced (although the PAPI 4.x code was not consistent in this area). If components want

to do software multiplexing or overflow they need to be able to set these values. How to avoid

conflict in this case is an open question (especially as the RAPL component would like to do this).

The creation of one singular papi os info allows building PAPI without a HW perfcounter

component, something that is useful on systems without perfcounter support (such as pre-2.6.31

versions of Linux, or even Mac OSX or Windows). In 4.x a separate “any-null” substrate was

required, but now that is no longer necessary.

ABI breakage: yes, the size of the cmp info structure

CDI breakage: yes, components that access obscure cmp info fields

API breakage: yes, anything that gets a cmp info struct and acts on the more obscure fields

Implemented: git commit bbd7871f4

2.1.2 Component Names in .cmp info

The start of 5.0 development began with a transition of the PAPI sourcecode from a CVS repository

to git. Prior to the git transition the name and version fields in .cmp info were automatically set

by CVS, looking something like:

$Id: linux-net.c,v 1.11 2012/02/13 17:09:51 terpstra Exp $

7

With PAPI 5.0 the name field can be whatever the developer feels is appropriate. By default we

have changed all in-tree modules to have the name set to the name of the primary source code file,

with the extension dropped off. So for example, the name for “linux-rapl.c” would be “linux-rapl”.

This allows existing code that used the following to still work:

if strstr(cmp_info.name,"example") ...

There can be some confusion because the name set with the --with-components= configure

flag is based on the component directory and not related to the actual component name specified

in .cmp info.

ABI breakage: yes, the names of the components

CDI breakage: yes, the names of the components

API breakage: yes, the names of the components

Implemented: git commit 6f0c1230f29b5f

2.1.3 Processor Specific fields in .cmp info

In PAPI 4.4 the .cmp info structure included many CPU-specific values, most of them relating to

itanium processor support. These fields do not need to be global and should be limited to a specific

CPU component. If necessary, the settings of these values can be detected at enumeration time.

In PAPI 5.0 we removed the following fields: Itanium: data address range, instr address range,

cntr IEAR events, cntr DEAR events, cntr OPCM events, opcode match width, x86: edge detect,

invert, profile ear, Power5: cntr groups.

Unfortunately many programs (including some of the PAPI ctests) accessed these values directly

from .cmp info.

ABI breakage: yes

CDI breakage: yes, if components tried to set these fields

API breakage: yes; these values are exposed in cmp info

Implemented: edge detect, invert: git commit 401f37bc59, the rest: git commits 5961c03d9,

a245b50228, 8f3aef4a9, 047af62904, 3f1f9e100, 962c642abb, 5aa7eac18393, 1bf68d5d3dd.

2.1.4 Other Additions to .cmp info

We added a short name field that components can set; this will eventually be prepended to event

names (something like short name::retired instructions).

A description field has been added, for describing what the component does. This is printed

(for example) by papi component avail.

8

A disabled and a disabled reason field are added to allow disabling components, and for

holding information on why a component is disabled.

A component type field was added, so we can specify whether a component is CPU, GPU, I/O,

etc. The papi xml event info tries to provide this info. We have not defined the enum for this

yet.

We add reserved[] padding so we can make ABI changes in the future.

ABI breakage: yes

CDI breakage: yes

API breakage: yes; these values are exposed in cmp info

Implemented: short name and description: 9f3e634a6b4, disabled and disabled reason: 0f2c25930ae94

2.2 Changes to papi vector t Function Pointers

The CDI provides a number of function pointer hooks. These are how PAPI interacts with a com-

ponent. In PAPI 4.x the available hooks included many which were not useful for most components,

but were just a vestige of the hooks used by perfctr. For PAPI 5.0 we update the available hooks

to better suit modern component development.

2.2.1 Removing Operating System hooks from papi vector t

As with .cmp info, we create a separate papi os vector t structure and move various operating

system-specific functions there.

• The following pointers are removed from papi vector t and put into a new papi os vector t

structure: get real cycles, get real usec, get virt cycles, get virt usec, update shlib info,

get system info, get memory info, and get dmem info.

• The following new fields added to papi os vector t: get real nsec, get virt nsec

• A new int papi init os(void) function initializes the new PAPI os vector t structure,

and each OS support file should have such a function.

• All components that reference the OS specific fields have had them removed (none should

have been using them anyway).

PAPI 5.0 enhances support for PAPI get real nsec() and PAPI get virt nsec(). In PAPI

4.x these were just extrapolated from the cycle count based on MHz. This was suboptimal on

platforms that can actually return nanosecond values. PAPI 5.0 adds support for get real nsec

9

and get virt nsec calls so that operating systems that support nanosecond resolution can properly

provide it.

In the distant past, some components may have used CPU counters when calculating .get real cycles.

This is not easily supported with the new layout.

ABI breakage: no

CDI breakage: yes

API breakage: no

Implemented: git commit 40bc4c57f8f9

2.2.2 Removing Bipartite Map Functions

In PAPI 4.x and before there were various function pointers that provided support for bipar-

tite map event scheduling (bpt map avail, bpt map set, bpt map exclusive, bpt map shared,

bpt map preempt, and bpt map update). This was developed for the complicated POWER event

group dependencies, but was made generic so other code could use it. Only perfctr used this

support, as libpfm3 and/or perf event kernels handle the scheduling for you.

In PAPI 5.0 we remove the functions from the vector table; the code has been moved to

papi bipartite.h and can be included by any component that specifically needs this support.

ABI breakage: no

CDI breakage: yes

API breakage: no

Implemented: git commit e69815d7429b2

2.2.3 Native Event Conversion Routines

PAPI 4.x had the following: ntv name to code, ntv code to name, ntv code to descr, ntv code to bits,

and ntv bits to info.

ntv code to bits was currently only implemented by perfctr. This causes problems, as PAPI get event info()

was implemented via .ntv code to bits followed by .ntv bits to info. Because of this, the

event info t structure is only available when using perfctr.

In PAPI 5.0 we add a new ntv code to info function and remove ntv bits to info. This al-

lows direct access to the event info, which is necessary to access the new enhanced event information

described in Section 4.2.

ABI breakage: no

CDI breakage: no

10

API breakage: no

Implemented: git commit 9c54840e5

2.3 Substrate to Component Rename

PAPI 4.x used the name “substrate” and “component” interchangably (although usually substrate

referred to the main CPU component).

In PAPI 5.0 we rename all uses to use “component”.

This involved fixing all components, renaming .init substrate to .init component and

.shutdown substrate to .shutdown component.

Also, to avoid confusion (this was a common source of bugs) we renamed .init to .init thread

and .shutdown to .shutdown thread.

In addition, PAPI ECMP was added to mirror PAPI ESBSTR (the latter was left for compatability

reasons) and various other uses of SUBSTRATE were renamed COMPONENT.

ABI breakage: no

CDI breakage: yes

API breakage: no

Implemented: git commit: 79b01a47ce12f4f

2.3.1 Removing Obsolete Functions

The .add prog event function was only used by PAPI add pevent() PAPI-3 compatibility code

and not actually implemented by any of the substrates. It was removed in PAPI 5.0.

ABI breakage: no

CDI breakage: no

API breakage: no

Implemented: git commit 8da3622291a

3 New/Modified PAPI interface functions

PAPI 5.0 has added some new user-visible interface functions.

11

3.1 PAPI add named event()

int PAPI add named event(int EventSet, char *EventName);

In PAPI 4.x adding an event by name was a two stage process: first you ran PAPI event name to code()

(checking for errors) and then passed the result to PAPI add event(). PAPI 5.0 adds PAPI add named event()

that reduces this to one step.

ABI breakage: no

CDI breakage: no

API breakage: no

Implemented: git commit 1c87d89c4a7

3.2 PAPI remove named event(), PAPI query named event()

int PAPI remove named event(int EventSet, char *EventName);

int PAPI query named event(char *EventName);

These are similar in idea to PAPI add named event().

ABI breakage: no

CDI breakage: no

API breakage: no

Implemented: git commit 1c87d89c4a7

3.3 PAPI get event component()

int PAPI get event component(int EventCode);

This is meant to replace the PAPI COMPONENT INDEX() macro now that we have removed the

16-component limit and the component can no longer be determined by shifting/masking the event

number.

A PAPI COMPONENT INDEX() compatibility macro is provided.

This was added as part of the 16-component limit removal described in Section 6.

ABI breakage: no

CDI breakage: no

API breakage: no

12

Implemented: git commit d1ed12b79807e

3.4 PAPI enum cmp event()

int PAPI enum cmp event(int *EventCode, int cid, int modifier);

The existing PAPI enum event() does not take a component ID; it gets the component number

from the event passed in. This new PAPI enum cmp event() makes the component ID explicit.

ABI breakage: no

CDI breakage: no

API breakage: no

Implemented: git commit deac54cc8184

3.5 PAPI get component index()

int PAPI get component index(char *name);

PAPI get component index() returns the component index of the specified (by name) compo-

nent. This is useful for finding out if a specific component exists.

ABI breakage: no

CDI breakage: no

API breakage: no

Implemented: git commit 420c3d11c2822

3.6 PAPI disable component()

int PAPI disable component by by name(char *name);

int PAPI disable component(int cidx);

These function lets you disable components before running PAPI library init(). There are

various reasons you may want to do this, usually to avoid overhead of components you are not

interested in.

Here is some source code that shows how to disable the “example” component:

int cidx , result;

13

cidx = PAPI_get_component_index ("example");

if (cidx >=0) {

result = PAPI_disable_component(cidx);

if (result == PAPI_OK)

printf("The example component is disabled\n");

}

/* ... */

PAPI_library_init ();

ABI breakage: no

CDI breakage: no

API breakage: no

Implemented: git commits 420c3d11c2822, ac2eac56dcd7ec

4 Extensions to PAPI event info t

In PAPI 5.0 we have added additional information to events to allow tools to make better use of

the data returned.

4.1 PAPI event info t Layout

The PAPI event info t structure was re-arranged to better separate out the predefined event

specific fields from the other fields. At one point we considered slimming down some of these

fields (as some of them can possibly be many kilobytes in size). Upon reviewing usage of the

code it turns out most users only ever have one PAPI event info t around at a time; they call

PAPI get event info() and re-use the structure. Thus optimizing some of the fields to be dynam-

ically allocated would not help overhead much and would add additional memory allocation/freeing

complications (as well as breaking backward compatibility).

In the end the behind-the-scene preset structures were changed to minimize memory consump-

tion but this was not a user-visible change.

4.2 Enhanced Event Info

In Kluge et al.’s “Collecting Distributed Performance Data with Dataheap” [1] paper they describe

extended event information that can improve the usefulness of results provided by PAPI. Many

of these are useful when trying to correlate system-wide events, and also when correlating events

collected from different components with non-synchronized timestamps.

14

In PAPI 5.0 we extend the PAPI event info t structure to provide this additional event infor-

mation. The user can access this info via PAPI get event info(), which more components should

support due to the addition of the ntv code to info function hook described in Section 2.2.3.

Ideally all of these fields will be set to proper values, but most components still leave these set

to the defaults.

ABI breakage: yes, we change external visible PAPI event info t

CDI breakage: components will have to handle the new fields

API breakage: yes, we change external visible PAPI event info t

Implemented: git commit c4579559d7

4.2.1 Specifying Extended Value Types

In PAPI 4.x and before, results returned were always unsigned 64-bit integers.

PAPI 5.0 adds a new data type field which allows for more interesting values, although they

still all must fit in 64-bits.

Currently the following types can be specified:

PAPI_DATATYPE_UINT64 = 0, /**< Data is a unsigned 64-bit int */

PAPI_DATATYPE_INT64, /**< Data is a signed 64-bit int */

PAPI_DATATYPE_FP64, /**< Data is 64-bit floating point */

Other data types can be imagined, such as two 32-bit values, or a ratio.

4.2.2 Units

PAPI 4.x assumed all results were a unitless count. This made reporting values difficult for some

components which had results with units (Watts, Joules, Kelvin, etc.).

PAPI 5.0 adds the units field to PAPI event info t. It is a string to provide maximum

flexibility when specifying units (and to avoid having to have a constantly updated list of list of

unit #defines in papi.h).

4.2.3 Component Index

The component index field was added that allows mapping event info back to the parent compo-

nent.

4.2.4 Location

It is useful to know where on the system that an event is running. The location field indicates

this.

15

The current available values are:

PAPI_LOCATION_CORE = 0, /**< Measures local to core */

PAPI_LOCATION_CPU, /**< Measures local to CPU (HT?) */

PAPI_LOCATION_PACKAGE, /**< Measures local to package */

PAPI_LOCATION_UNCORE, /**< Measures uncore */

4.2.5 Value Type

Traditionally PAPI measures value as a running sum, starting from a PAPI start() call. This does

not make sense for certain types of measurements, such as temperature where you really only want

an instantaneous value.

The value type field lets you specify different types of values. Currently supported are:

PAPI_VALUETYPE_RUNNING_SUM = 0, /**< Data is running sum from start */

PAPI_VALUETYPE_ABSOLUTE, /**< Data is from last read */

4.2.6 Timescope

The timescope fields lets you know the scope of the current measurement; whether it starts from

the beginning or if it is only since the last read.

PAPI_TIMESCOPE_SINCE_START = 0, /**< Data is cumulative from start */

PAPI_TIMESCOPE_SINCE_LAST, /**< Data is from last read */

PAPI_TIMESCOPE_UNTIL_NEXT, /**< Data is until next read */

PAPI_TIMESCOPE_POINT, /**< Data is an instantaneous value */

4.2.7 Update Type and Frequency

Not all events are continuously updated. The update type and update freq fields let your code

know how and how often the counts are updated.

PAPI_UPDATETYPE_ARBITRARY = 0, /**< Data is cumulative from start */

PAPI_UPDATETYPE_PUSH, /**< Data is pushed */

PAPI_UPDATETYPE_PULL, /**< Data is pulled */

PAPI_UPDATETYPE_FIXEDFREQ, /**< Data is read periodically */

5 Event Enumeration Issues

One of the more difficult tasks that PAPI does is enumerate a list of all possible events, such as is

done with the papi native avail utility.

16

Currently, you can enumerate in various ways. PAPI itself handles enumerating the predefined

events (including many variations of sub-typing).

Enumeration of native events is handled by each component. Each must support PAPI ENUM FIRST,

PAPI ENUM EVENTS and PAPI NTV ENUM UMASKS. This allows finding the first event, finding each sub-

sequent event, and finding all umasks (options) for each event. (Some of the HW counter substrates

support more advanced enumeration, such as for example PAPI NTV ENUM GROUPS on POWER).

With the move to the libpfm4 library during the PAPI 4.x series, additional umasks have been

available that take either boolean or integer parameters. PAPI supported using these umasks, but

did not show them when enumerating.

With PAPI 5.0 these values are now shown. Currently only the first value is enumerated. For

example, for the boolean umask “u” (meaning, use user-only events) it is enumerated as u=0. The

other sate, u=1 is not shown. The umask “c” (meaning CMASK) is of integer type and can take

values 0 through 255. Currently only c=0 is enumerated.

It is unclear the best way to expose this via enumeration so that tools can automatically generate

all possible events. PAPI enumeration tends to be done via strings, and all values returned are

expected to be valid events. This makes it difficult to pass along values such as integer ranges. For

a longer discussion of this issue, see Section 13.8.

ABI breakage: no

CDI breakage: no

API breakage: no

Implemented: git commit 36e864b37467b

6 Removing the 16-component limit

In PAPI 4.0 the “native events” were specified at the bit level (see Figure 1). The event, umask,

and component could be determined by shifting and masking the event.

With the advent of libpfm4 and perf events, as well as modern hardware, this bit layout of

native events became unworkable. There were more distinct events and umasks than could fit in a

32-bit value.

With PAPI 4.1 and libpfm4 the native events were changed to be dynamically allocated, so that

the bit limitations could be avoided. The 16-component limit was left in.

In PAPI 5.0 we remove the 16-component limit.

As Figure 2 shows, we did this by adding a new table, which is indexed by the native event

(with the NATIVE MASK removed). This table holds the component number for the event, and

the internal event. These two values are then passed on to the component as necessary. In effect,

17

31 0

PAPI Event

PAPI_PRESET_MASK

PAPI_NATIVE_MASK

15 711

EVENT

25

UMASKCOMPONENT

Figure 1: PAPI 4.0 native event bit layout. We ran out of room for expansion, and were limited to
16 components.

Preset
Native

0 31

0x4000 0003

Component Internal ID

5 2

To the

component

Figure 2: PAPI 5.0 native event lookup. Component lookup is now done by an array lookup rather
than a shift-and-mask.

a shift/mask operation has been replaced with a table lookup. Performance measurements show

that the change in overhead is minimal.

The PAPI COMPONENT MASK and PAPI COMPONENT AND MASK values were removed. Current code

or components that used them can just remove them.

In theory components can now have a full 32-bit internal event value for their own use.

For backwards compatibility the PAPI COMPONENT INDEX() call has been left around and re-

implemented using the new PAPI get event component() function.

18

ABI breakage: no

CDI breakage: maybe, if components are making assumptions based on event bits

API breakage: possibly if the code made assumptions about event layout or used PAPI COMPONENT MASK

or PAPI COMPONENT AND MASK

Implemented: git commit 9a26b43d29f9a

7 Error Propagation

PAPI is a library, and thus it has limited means for passing error reports back up to the user. In

PAPI 5.0 we tried to enhance this.

It is now possible to pass component initialization failure messages. The component just has to

set the .disabled reason field, which the user can access via cmp info t.

ABI breakage: yes

CDI breakage: yes

API breakage: yes

Implemented: git commit 0f2c25930ae94

8 Virtualized Events (PAPI-V)

PAPI 5.0 has many enhancements for running in virtual systems.

We detect if we are running inside of a VM by accessing leaf 0x40000000 via cpuid. We

return whether we are inside a VM and the VM name if available in the new virtualized and

virtual vendor string fields in hw info t. This has been tested to work in both KVM and

VMware environments.

We have a new “vmware” component that provides information from VMware pseudo-performance

counters as well as the vmGuestLib library.

We have a new “stealtime” component that provides information on how long the VM we are

running in has been scheduled out. This currently only works on KVM.

Recent versions of VM software provide virtualized performance counters. PAPI runs natively

inside of these without changes. This includes the newest versions of VMware workstation (requires

a special configuration option), the next version of VMware ESX, and KVM running on 3.3 or newer

kernels with a new enough KVM/qemu.

ABI breakage: no

CDI breakage: no

19

API breakage: no

Implemented: reporting we are in VM: d7496311119

9 Better CPU Frequency Support

Currently our tests can fail if frequency scaling (either for power-save or for turbo-boost) happens.

PAPI 4.x read the CPU frequency from /proc/cpuinfo at startup and use this value always.

This value is guaranteed to be wrong on systems doing DVFS because the system is likely idle

when PAPI starts but soon after the frequency is ramped up as the load increases.

Linux supports reading the current cpu frequency (and all possible frequencies) from files under

/sys. The key missing feature is that Linux will not notify you in any way if the frequency changes,

so there’s no way for PAPI to know short of periodically checking.

PAPI 5.0 adds a minimum mhz and maximum mhz value to the hw info t structure. These are set

based on the files in /sys/devices/system/cpu/cpu0/cpufreq/ This takes into account DVFS,

although we still do not handle turbo-boost as well as stranger things such as heterogeneous pro-

cessors such as the ARM BIG.little.

Previous MHz values returned by PAPI are set to the maximum mhz value.

The /proc/cpuinfo value of MHz is returned in cases where we cannot determine MHz values

from /sys.

ABI breakage: yes

CDI breakage: no

API breakage: yes

Implemented: git commit d9a58148447b

10 Component Detection

Until PAPI 4.2.1 if a component returned an error in its init substrate() routine, then PAPI

as a whole would fail. To get around this, components worked around this by indicating success

but setting num native events to be 0. As of PAPI 4.2.1 there is a workaround that will set this

workaround by default if a PAPI error is returned.

PAPI 5.0 implements a better solution: if component initialization fails then it is marked as

disabled with the disabled reason field set in cmp info.

ABI breakage: yes

CDI breakage: yes

20

API breakage: yes

Implemented: yes 6b18415879c16f

11 Locking Changes

PAPI 5.0 includes a cleanup of the locking code.

PAPI still includes hand-tuned assembly mutexes. PAPI 5.0 provides the new configure option

of - -with-pthread-mutexes which enable using POSIX pthread mutexes. This provides support

for platforms not having hand-coded locks, as well as allowing the various Valgrind race-condition

detection code to work with PAPI.

ABI breakage: no

CDI breakage: no

API breakage: no

Implemented: git commit: 92689f626b

12 Other Additions/Removals/Changes

In addition to API/ABI changes, there has been a lot of general development of the PAPI infras-

tructure.

12.1 New Components

The following existed in PAPI 4.2.1 but have seen major overhauls:

• coretemp – temperatures, voltages, fan readings on Linux

• cuda – NVIDIA GPU events

• example – simple test component

• infiniband – gives infiniband stats

• lmsensors – gives temperature/fan readings

• lustre – info from the lustre filesystem

• mx – myrinet stats

• net – generic Linux network statistics

21

The following are new for PAPI 5.0:

• appio – I/O statistics

• bgpm – various BG/Q modules

• nvml – power readings for NVIDIA cards

• rapl – power/energy estimates for Intel SandyBridge chips

• stealtime – stealtime from inside of KVM

• vmware – VM stats as well as pseudo-performance counter values from inside of VMware

12.2 Removed Components

The ACPI component was removed, as it was broken and has been replaced in functionality by the

coretemp component.

12.3 Removed Windows Support

Microsoft Windows support has not really been possible since the PAPI 3.7 release. In PAPI 5.0

we removed the code. (git commit 3148cba5ce16b4)

12.4 Removed Java Support

PAPI 3.x (or before) had some initial support for access from Java. This was unmaintained and

removed in PAPI 5.0 (git commit 666249a803b10).

12.5 New Operating Systems

No new ones have been added, although the FreeBSD support was majorly overhauled.

OSX support has been temporarily removed but can be added back.

12.6 New Processor Support

BlueGene/Q support was added in 4.4 but is still relatively new.

Intel SandyBridge has been a work in progress.

Intel Ivy Bridge support is new, as is Cedar View Atoms.

AMD Interlagos support is still new.

22

12.7 New Pre-defined Events

Dan added PAPI REF CYC which can give you unscaled cycles on newer Intel processors.

ABI breakage: no

CDI breakage: no

API breakage: no

Implemented: git commit: 8b9b6bef94030ee

12.8 Component Name Prepending

We now pre-pend the component to the front of event names. This lets you specifically ask for a com-

ponent. The separator is three colons. This lets you have event names such as PE:::INSTRUCTIONS RETIRED:ALL

and CUDA:::TEXTURE MISSES. For backward compatibility all components will be searched if an

event does not provide a pre-pended component name.

ABI breakage: no

CDI breakage: no

API breakage: no

Implemented: git commit: 57aeb9d478cb04e6d

12.9 Improved Error Handling

• PAPI’s error functions (PAPI perror() and PAPI strerror()) should be closer to their

POSIX equivalents (git commit a366adf7da579eb652).

• It would be nice to have some method of passing more detailed error information (including

possibly strings) up through the PAPI stack from the components

13 Items not making it into PAPI 5

13.1 Uncore Support

perf event uncore support will finally arrive in the 3.5 kernel release. We have not had time

implement PAPI support.

13.2 Further cmp info t field removals

There are a few fields that describe the counters. Are they worth keeping? Many are not used inter-

nally by PAPI at all, but outside programs can access them directly via PAPI get component info().

23

The fields fast counter read, fast real timer, and fast virtual timer might provide use-

ful information on the latency of various operations, and may guide someone who is instrumenting

code in critical sections. The definition of “fast” can be a bit arbitrary though.

The cntr umasks field specifies whether events can have umasks. These days PAPI internally

just assumes all events can, so this value is meaningless.

13.3 Official CDI interface

Should we have an official “papi cdi.h” that is included by modules, rather than them including

“papi internal.h” and getting access to everything?

13.4 get memory info vector

Another issue is .get memory info and how it applies to components. For example, a GPU might

want to provide memory information for its onboard RAM. The best solution might be to leave a

get memory info function hook for providing this kind of information and rename the OS one to

get system memory.

13.5 Component Specific Settings

An often requested feature is some way to change component settings, similar to ioctl(). This

would allow changing internal component options (such as sampling interval in the coretemp com-

ponent). The current method of setting options, PAPI set opt(), only lets you set a certain subset

of features, and is not extensible without modifying papi.h.

One suggestion is re-using the user function, and passing in name/value pairs in string format

that the component could then parse. Since we are breaking API/ABI anyway, we could just add

a new function totally. In that case we should also add a way of providing a list of which settings

are possible to users.

A way of enumerating list? Bunch of strings? For example, sampling rate in coretemp?

There is a user function defined, which is currently unused.

This could be a good way to solve the “how do I set component-specific values” problem.

Perhaps the user function could be used to pass in name/value string pairs that a component

could act on.

If are breaking the API/ABI anyway though we might as well just add a new routine. Also a

way to export the values supported.

13.6 PAPI enum components()

Should we add such a function?

24

int PAPI enum components(int current, int modifier);

With new support for distinguishing between components that are compiled-in versus enabled,

we need some way of enumerating components.

13.7 More return values

It might be desirable to return more than just 64-bit values. Especially components that might

want to return chunks of values at a time to be processed later. It is unclear the best way to handle

this. One proposal is to return points to blobs of memory, though this could get messy quickly.

The perf event component can return series of samples, as can some other components. How

do we expose this?

Implementing the fits-in-64-bits option will be easy; designing a proper infrastructure for bigger

values will be hard.

13.8 Event Fields that take a Range

Some event times currently available in libpfm4 actually take a umask with a range, not just a

plain umask value. For example, on Intel processors there’s a CMASK field which can take an 8-bit

parameter.

Currently there is no way to specify the availability of this so that it shows up sanely in

papi native avail.

The best option for exposing this is probably adding a new enumeration type that enumerates

these and returns a value like “CMASK=0-255”. Currently enumeration only operates on strings;

there is no way to pass back ranges. After passing back a value like shown the user will have to

parse the string back into a range (and not just blindly try to use it as a umask).

This might also be useful for specifying events that fit a pattern, such as reporting “CORE0-

15:TEMPERATURE” in a temperature component rather than enumerating 16 different ones ex-

plicitly.

Returning results like this will break programs that try to enumerate all possible events (al-

though that’s already a bit of a losing proposition). To not break things it might make more sense

to provide yet another enumeration type where a program has to specifically ask for umasks that

take a range, maybe PAPI NTV ENUM RANGES.

It is unclear the best way to expose this via enumeration so that tools can automatically generate

all possible events. PAPI enumeration tends to be done via strings, and all values returned are

expected to be valid events. This makes it difficult to pass along values such as integer ranges.

25

13.9 Privileged Events

Some events can only be run by privileged users. It would be nice to expose this to users so they

can know not to use them unless they have root privileges. This includes events such as ones that

set the ANY bit on Intel Nehalem machines (on perf event kernels) as well as Uncore events.

13.10 Extended Sampling Interfaces

perf event provides a complex sampling infrastructure, where multiple samples can be queued up

and only read when a threshold is crossed. Currently we have no way of exposing this to the user.

Also, support for Intel PEBS and AMD IBS sampling will eventually make it into the kernel.

These provide extra values when sampling, anything from latency values to entire CPU state. We

need to find a good way to export these values in a way that the user can access.

Various components, especially power ones, also return values in big buffers with multiple

measurements at once. Exporting this through the traditional PAPI interfaces will be a challenge.

13.11 Extended User-events

Should the pre-defined event codes be absorbed by user-defined events? Can we create user-defined

events using events found in the components?

13.12 Distinguish Events that can be Sampled

A way to distinguish between events that can/cannot be sample sources. Currently the only way

to determine this is to check whether an event is ’derived’ in the preset event info structure.

13.13 More Code Coverage

Code that is not compiled quickly breaks. The PAPI code is littered with #ifdefs and configure

options, so much so that a lot of code quietly breaks without anyone noticing.

To fix this I’ve been attempting to remove as many ifdefs as possible. Have as much configuration

be determined at run time as possible.

Use configure as little as possible as well, again try to determine things at runtime.

A big help will be to have configure enter component subdirs and call those subconfigures. Many

people do not test some of the more obscure components because there’s this barrier to entry, and

it is hard to script.

13.14 Removing Obsolete Components

The ACPI component was removed when it was found to be not providing useful information.

At what point should perfctr and perfmon2 components be dropped? The Solaris OS support?

26

Should Windows support be dropped? It hasn’t worked in ages and its #ifdefs make the code

extremely messy.

Any-null support has been dropped.

13.15 Improving Test Infrastructure

The current test infrastructure reports many spurious errors when a counter such as PAPI FP OPS

is unavailable. The tests should detect this early and do a “skip” rather than a fail.

We should also probably add a test early on that detects if counters are not available, and skip

any tests that depend on HW counters being available. This will allow the tests to run on systems

like VMs where PAPI is still usable for timing and components but not for HW counting.

We should also add infrastructure for things like perf event specific tests. I have a number of

these but they are currently outside the main PAPI tree.

13.16 Enhanced Virtualized Timer Support

We are still investigating the best way to return useful time values while running inside of a VM.

13.17 Advanced Frequency Scaling Support

It is hard to determine exactly what frequency a CPU is running at.

PAPI is full of assumptions that MHz is fixed. The PAPI get virt cycles() and PAPI get real cycles()

calls just multiply time by MHz for example.

Due to the design of the Linux frequency scaling mechanism, we can only poll for changes,

we cannot just read them out. That makes adjusting for scaling or things like turbo boost very

difficult.

We should still investigate enhancing PAPIs support though.

13.18 Finer-grained user/kernel support

perf-events supports per-event user/kernel support.

Currently overwritten by the PAPI event-set wide settings.

Tricky to implement this right.

13.19 perf event rdpmc support

Linux 3.4 adds support for using userspace rdpmc for low-latency perfctr-style reads. We should

support this.

27

13.20 Watt’s Up Component

I need to finish it.

13.21 PAPI FP OPS

It is hard to choose proper events for floating point.

Currently Sandy Bridge PAPI FP OPS cannot hold all of x87, SSE, and AVX events at one time.

If NMI watchdog is enabled and hyperthreading too, then only 3 events are available.

Should we implement multiplexed presets?

What about Ivy Bridge which might have no floating point events?

13.22 Enhanced Multiplexing Support

The current perf event multiplexing support runs each event separately.

It might be good to add an interface that allows multiplexing events together when possible

(for example, have FLOPS components together, or have IPC and CPI components together if

possible).

This is made difficult by the various schedulability bugs in the Linux kernel.

13.23 Component Presets

It’s currently not possible to set up presets in components. This should be fixable, but what kinds

would we want? Would something like PAPI CPU POWER make sense?

13.24 Avoiding High-Latency Component Initialization

Some components (most notably CUDA) can take a relatively long time to initialize. This can

cause tools using PAPI to have a large startup overhead, even when the user does not plan to use

the component at all.

We have attempted to address this with the disable component support described in Section

3.6.

There have been some rumblings that this might still be an issue, most notably some components

can take many seconds to initialize. If this is still the case we should re-investigate how to handle

this.

13.25 Mitigating Long Latency Reads

As we move away from only CPU counter reads, there becomes the potential for long-latency reads.

For example, reading values from a power meter connected to the system via a serial cable can take

milliseconds. This can start to impact the performance of the program being measured.

28

One possible solution would be to have a component spawn a separate thread that handles I/O

(almost like a daemon). This thread can periodically poll the hardware, and the PAPI component

can return a cached (though possibly slightly old value) with low latency.

Setting this up properly can be a complicated process; it might be worthwhile to provide

infrastructure that handles this.

13.26 Multiple perfcounter implementations

With this OS separation it would become possible to build multiple perfcounter implementations

into PAPI and choose the proper one at runtime (enabling a dual perfctr/perf event PAPI) although

the usefulness of that has probably dwindled now that perf events is widely available.

13.27 PAPI get OS info call

Open question: would a PAPI get os info() call be useful for users, to get access to this new

structure? The problem is if it is globally visible we get stuck supporting the various fields forever.

13.28 Multiple users of itimers

How to avoid conflict in this case is an open question (especially as the RAPL component would

like to do this).

13.29 Fixes for RAPL component

It doesn’t handle overflow well.

13.30 Always enable inherit

Users seem to expect threads to accumulate for final totals, especially with OpenMP.

Some are even using the high-level PAPI interface.

Should we enable inherit by default if available?

Problem with the idea of “num counters” when on perf events that doesn’t really matter, with

software counters you can add more than physical without multiplexing.

13.31 New Pre-defined Events

It might be nice to have PAPI TOT UOPS.

13.32 Better Build Environment

It might be nice if configure automatically traversed down to the component directories. It’s a bit

difficult that configure has to be run explicitly for various of the components.

29

The dependencies in the Makefiles aren’t complete, which means that sometimes a a make

clean is needed after making a change. This mostly affects things in the test directories.

Make distclean sometimes leaves files hanging around (you can see this by making distclean and

then running git status.

The .gitignore file could probably be improved.

13.33 Other Language Bindings

Currently we have support for C and Fortran. It might be nice to have Python, Java or Perl.

13.34 Parallel Library Components

MPI or OpenMP component. The new MPI 3.0 specification has a tools interface for reading out

performance type information; we could have a component for this.

14 Conclusion

The PAPI 5.0 release showcases many months of work by the PAPI team. We hope you find it to

be a satisfactory successor to the venerable PAPI 4.x releases.

15 References

References

[1] M. Kluge, D. Hackenberg, and W.E. Nagel. Collecting distributed performance data with

dataheap: Generating and exploiting a holistic system view. In Proc. of the 2012 International

Conference on Computational Science, pages 1969–1978, June 2012.

[2] D. Terpstra, H. Jagode, H. You, and J. Dongarra. Collecting performance data with PAPI-C.

In 3rd Parallel Tools Workshop, pages 157–173, 2009.

30

