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Abstract—Most modern CPUs include hardware performance
counters: architectural registers that allow programmers to gain
low-level insight into system performance. Low-overhead access
to these counters is necessary for accurate performance analysis,
making the operating system interface critical to providing low-
latency performance data. We investigate the overhead of self-
monitoring performance counter measurements on the Linux
perf event interface.

We find that default code (such as that used by PAPI)
implementing the perf event self-monitoring interface can have
large overhead: up to an order of magnitude larger than the
previously used perfctr and perfmon2 performance counter
implementations. We investigate the causes of this overhead and
find that with proper coding this overhead can be greatly reduced
on recent Linux kernels.

I. INTRODUCTION

Most moderns CPUs contain hardware performance coun-
ters: architectural registers that allow low-level analysis of
running programs. Low-overhead access to these counters
(both in time and in CPU resources) is necessary for useful and
accurate performance analysis. Raw access to the underlying
counters typically requires supervisor-level permissions; this
access is usually managed by the operating system. The
operating system thus enters the critical path of low-overhead
counter access.

The Linux operating system kernel is widely used in
situations where performance analysis is critical. This includes
High Performance Computing (HPC) where as of June 2014
97% of the Top500 supercomputers in the world run some
form of Linux [1]. At the other extreme are embedded systems
where performance optimization enables the maximum use
of limited hardware resources. Linux is key here too, as
Android phones (which run Linux kernels) make up 81% of
all smartphones shipped in 2013 [2].

Until 2009 the default Linux kernel did not include support
for performance counters (there were out-of-tree implementa-
tions available but these were not included in most distributions
and required custom kernel patching). The 2.6.31 Linux release
introduced first-class performance counter support with the
perf event subsystem. The perf event interface differs from
previous Linux performance counter implementations, primar-
ily in the amount of functionality handled by the operating
system kernel. Many of the tasks perf event does in-kernel
were previously done in userspace libraries, impacting mea-
surement overhead.

There are three common ways of using performance coun-
ters: aggregate measurement, statistical sampling and self-
monitoring.

Aggregate measurement is the easiest and lowest-overhead
method of gathering performance results. The counters are
enabled just before a program starts running and total results
are gathered when it finishes. The operating system aids
measurement by saving and restoring values on context switch
and also handling overflows where a value exceeds the counter
width. This methodology provides exact total measurements,
showing high-level overviews of program behavior. For de-
tailed per-function or per-instruction results other methods
must be used.

With statistical sampling the counters are programmed to
periodically gather measurements at regular intervals via the
generation of timer or overflow interrupts. By recording the
instruction pointer at time of sampling, function-granularity
performance results can be extrapolated statistically. This has
the advantage that the program does not have to be modified
with calls to measurement routines, but does have the disad-
vantage that the values are not exact and resolution can be
coarse. Setting the sampling rate higher can mitigate this, but
if set too high leads to increased interrupt and operating system
overhead which can overwhelm the actual measurements. Not
all hardware supports sampling; some systems lack a working
overflow interrupt (for example various ARM systems1), but
this can be worked around in software.

This paper concentrates instead on self-monitoring usage of
the counters, with an emphasis on the time overhead imposed
by the operating system interface. With self-monitoring a
program is instrumented to gather exact performance measure-
ments for blocks of code. Calls to measurement routines are
inserted into the code either by modifying the source code or
by using some form of binary instrumentation. While statistical
sampling can tell you, on-average, which function in your
program typically has the most of a metric (say L2-cache
misses), with self-monitoring you can insert calipers around
that function and find exact measurements.

The widely used cross-platform PAPI [3] performance
measurement library uses self-monitoring to provide detailed
measurements. When PAPI transitioned to perf event from the
previous perfctr and perfmon2 interfaces, a sharp increase in
overhead was found. At the time it was hoped that this was

1The overflow interrupt is not available on Raspberry Pi hardware, and there
are various errata that can cause overflow interrupts to be lost on Cortex A8
and Cortex A9 systems
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due to the newness of perf event and that the overhead would
decrease over time as the code was improved. As seen in
Figure 1 this was found not to be the case, which led to this
investigation of why perf event overhead is high and what can
be done to get results more inline with the previous perfctr and
perfmon2 interfaces.

II. BACKGROUND

The hardware interface for performance counters involves
accessing special CPU registers (in the x86 world these are
known as Model Specific Registers, or MSRs). There are
usually two types of registers: configuration registers (which
allow starting and stopping the counters, choosing the events
to monitor, and setting up overflow interrupts) and counting
registers (which hold the current event counts). In general
between 2 - 8 counting registers are available, although ma-
chines with many more are possible [4]. Reads and writes to
the configuration registers usually require special privileged
(ring 0 or supervisor) instructions; the operating system can
allow access by translating user requests into the proper low-
level CPU calls. Access to counting registers may require extra
permissions; some processors provide special instructions that
allow users to access the values directly (rdpmc on x86).

A typical operating system performance counter interface
allows selecting events to monitor, starting and stopping
counters, reading counter values, and (if the CPU supports
notification on counter overflow) some mechanism for passing
overflow information to the user. Some operating systems
provide additional features, such as event scheduling (handling
limitations on which events can go into which counters),
multiplexing (swapping events in and out and using time
accounting to approximate the availability of more physical
counters), per-thread counting (by loading and saving counter
values at context switch time), process attaching (obtaining
counts from an already running process), and per-cpu counting.

High-level tools provide common cross-architecture and
cross-platform interfaces to performance counters. PAPI [3] is
a widely-used performance counter abstraction interface that
is in turn used by other tools (such as TAU [5], Vampir [6],
or HPCToolkit [7]) that provide graphical frontends to the
underlying performance counter infrastructure. Although users
will typically work with these higher-level interfaces directly,
performance analysis works best if backed by libraries and
operating systems that can provide efficient low-overhead
access to the counters.

A. Counter Implementations

Most modern processors have support for performance
counters and thus many operating systems support interfaces to
access them. Commercial UNIX systems [8], [9], [10] provided
some of the earliest hardware performance counter implemen-
tations. Microsoft Windows does not include native support
for hardware performance counters; third-party tools (such as
Intel VTune [11], Intel VTune Amplifier, Intel PTU [12], and
AMD’s CodeAnalyst [13]) provide access by programming the
CPU registers directly. Since counter state is not saved on
context switch only system wide sampling is available. Apple
OSX is similar to Windows in that only system wide sampling
is available by directly programming the hardware. A tool that

does this is Shark [14]. FreeBSD[15] provides a more feature-
rich interface that is similar to that available for Linux.

Patches providing Linux support appeared soon after the
release of the original Pentium processor, the first x86 pro-
cessor with counter hardware. These early implementations
[16], [17], [18], [19], [20], [21] exported raw access to the
underlying Model Specific Registers (MSRs) but also gradually
added more features such as saving values on context-switch.
Despite these many attempts at Linux performance counter
interfaces, only three saw widespread use before the adoption
of perf event: oprofile, perfctr, and perfmon2.

1) Oprofile: Oprofile [22] is a system-wide sampling pro-
filer included in the 2002 Linux 2.5.43 release. It allows sam-
pling with arbitrary performance events (or a timer if you lack
performance counters) and provides frequency graphs, profiles,
and stack traces. The kernel interface is through a pseudo-
filesystem under /dev/oprofile; profiling is started and
stopped by writing there. Oprofile has limitations that make
it unsuitable for general analysis: it is system-wide only, it
requires starting a daemon as root, and it is a sampled interface
so does not support self-monitoring. Currently Oprofile is
still supported, although it is considered deprecated (with
perf event being the replacement).

2) Perfctr: Perfctr [23] is a widely-used performance
counter interface introduced in 1999. The kernel interface
involves opening a /dev/perfctr device and accessing it
with various ioctl() calls. Fast counter reads (that do not
require a slow system call into the kernel) are supported using
the x86 rdpmc instruction in conjunction with mmap(). A
libperfctr is provided which abstracts the kernel interface.

3) Perfmon2: Perfmon2 [24] is an extension of the itanium-
specific Perfmon. The perfmon2 interface adds a variety of
system calls with some additional system-wide configuration
done via the /sys pseudo-filesystem. Abstract PMC (config)
and PMD (data) structures provide a thin layer over the raw
hardware counters. The original v2 interface involved 12 new
system calls. In response to concerns raised during code review
this was reduced to just 4, but in the end this approach
was abandoned by the Linux developers in preference for
perf event. We use the last publicly released perfmon2 git tree
in this work, a patched Linux 2.6.30 kernel which uses version
2.9 of the interface with all 12 system calls. The libpfm3
library provides a high-level interface, providing event name
tables and code that schedules events to avoid counter conflicts.
These tasks are done in userspace (in contrast to perf event
which does this in the kernel).

B. perf event

The perf event subsystem [25] was created in 2009 as
a response to the proposed merge of perfmon2. perf event
entered Linux 2.6.31 as “Performance Counters for Linux” and
was subsequently renamed perf event in the 2.6.32 release.
The underlying perf event design philosophy is to provide as
much functionality and abstraction as possible in the kernel,
making the interface straightforward for ordinary users.

The interface is built around file descriptors allocated with
the new perf_event_open() system call [26]. Events are
specified at open time in an elaborate perf_event_attr
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structure; this structure has over 40 different fields that interact
in complex ways. Counters are enabled and disabled via calls
to ioctl() or prctl() and values are read via the standard
read() system call. Sampling can be enabled to periodically
read counters and write the results to a ring buffer which can be
accessed via mmap(); new data availability can be determined
via a signal or by poll().

Some events have elaborate hardware constraints and can
only run in a certain subset of available counters. Perfmon2
and perfctr rely on libraries to provide event scheduling in
userspace; perf event does this in the kernel. Scheduling is
performance critical; a full scheduling algorithm can require
O(N!) time (where N is the number of events). Heuristics
are used to limit this, though this can lead to inefficiencies
where valid event combinations are rejected as unschedulable.
Experimentation with new schedulers is difficult with an in-
kernel implementation as this requires kernel modification
and a reboot between tests rather than simply recompiling a
userspace library.

Some users wish to measure more simultaneous events than
the hardware can physically support. This requires multiplex-
ing: events are repeatedly run for a short amount of time,
then switched out with other events and an estimated total
count can be statistically extrapolated [27], [28]. perf event
multiplexes in the kernel (using a round-robin fixed interval),
which can provide better performance [29] but less flexibility.
More advanced sampling patterns and randomized intervals
could provide lower error [30], [31] but perf event does not
support such modes.

C. Post perf event Implementations

perf event’s greatest advantage is that it is included in the
Linux kernel; this is a huge barrier to entry for all competing
implementations. Competitors must show compelling advan-
tages before a user will bother taking the trouble to install
something else. Despite this, various new implementations
have been proposed.

LIKWID [32] is a method of accessing performance coun-
ters on Linux that completely bypasses the Linux kernel by
accessing MSRs directly. This can have low overhead but
can conflict with concurrent use of perf event, as well as
causing security issues (a regular user can obtain root priv-
ileges if given write access to arbitrary MSRs; see CVE-2013-
0268). Only x86 processors are supported, and per-process
measurements are not possible (due to lack of MSR save on
context-switch). True self-monitoring is not possible, although
“markers” can be added to user code that signal an external
monitoring process to read the counters.

LiMiT [33] is an interface similar to the existing per-
fctr infrastructure. They find up to 23 times speedup versus
perf event when instrumenting locks. Their methodology re-
quires modifying the kernel and is x86 only.

III. EXPERIMENTAL SETUP

I compare the self-monitoring overhead of perf event
against the perfctr and perfmon2 interfaces on various x86 64
machines as listed in Table I.

TABLE I: Machines used in this study.

Processor Counters Available

Intel Atom Cedarview D2550 2 general 3 fixed

Intel Core2 P8700 2 general 3 fixed

Intel IvyBridge i5-3210M 4 general 3 fixed

AMD Bobcat G-T56N 4 general

Performance measurements have the potential to disrupt
the execution of programs; therefore it is necessary to keep
instrumentation overhead as small as possible. Self-monitoring
tools such as PAPI add two different chunks of code to an
instrumented program. The first initializes the library and
sets up the events to be measured. This initialization step
can involve a considerable amount of code, but if placed
early in the program execution it hopefully does not affect
measurements that happen later. The second piece of code
added is the actual instrumentation, the calipers conducting
measurements around the area of interest. This code starts the
counters and then stops and reads values when finished (often
the raw values are stored for later analysis, as any additional
processing would add extraneous overhead). These operations
are the ones that need to have the lowest possible overhead as
not to interfere with measurement.

We use the x86 rdtsc timestamp counter to obtain fine-
grained timing of overhead. We measure the overhead of start,
stop, and read on four x86 64 machines using perf event,
perfctr, and perfmon2. An empty code block (a start followed
by an immediate stop) is used to avoid any impact that
arbitrary test code might have on measurement overhead. All
three measurements are made in a single run by placing the
timestamp instruction in between function calls, as shown in
the following perf event example (the perfmon2 and perfctr
code is similar):

/∗ Ev en t s opened / i n i t i a l i z e d p r e v i o u s l y ∗ /

s t a r t b e f o r e = r d t s c ( ) ;
r e t 1 = i o c t l ( fd [ 0 ] , PERF EVENT IOC ENABLE , 0 ) ;
s t a r t a f t e r = r d t s c ( ) ;

r e t 2 = i o c t l ( fd [ 0 ] , PERF EVENT IOC DISABLE , 0 ) ;
s t o p a f t e r = r d t s c ( ) ;

r e t 3 = r e a d ( fd [ 0 ] , b u f f e r , BUFFER SIZE∗
s i z e o f ( l ong long ) ) ;

r e a d a f t e r = r d t s c ( ) ;

Direct comparisons of implementations are difficult;
perf event support was not added until Linux 2.6.31 but
perfmon2 development was halted in 2.6.30 and the most
recent perfctr patch is against 2.6.32.

I test a full range of perf event kernels starting with 2.6.32
and running through 3.18, and show cross-machine results
using a recent 3.16 kernel. For comparisons between the old
and new interfaces older hardware (such as core2 systems) are
needed as the old interfaces do not support newer CPUs.

Unless otherwise specified the kernels were compiled with
gcc 4.4 with configurations chosen to be as identical as
possible (the configuration files used are available from our
website).
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Fig. 1: Initial per-kernel self-monitoring measurement overhead comparison on core2. A core2 is used as perfctr and perfmon2
are not supported on more modern CPUs. The plots are boxplots: the solid box shows 25th to 75th percentile with a white line
at the median; the error bars show one standard deviation, and Xs mark outliers. Outliers are typically due to cache-misses.
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The /proc/sys/kernel/nmi_watchdog value is set
to 0 on perf event to keep the kernel watchdog from “stealing”
an available counter. We also disable dynamic frequency
scaling during the experiments, as we found this affects the
timing measurements on some systems.

IV. OVERHEAD COMPARISON

What follows is an investigation of the causes of self-
monitoring overhead. I investigate total overhead, and then
break out the the read, start, and stop results separately.

A. Total Overhead

The overall plot in Figure 1d shows the initial total
overhead results obtained when starting a pre-existing set of
events, immediately stopping them (with no work done in
between) and then reading the counter results. This gives a
lower bound for how much overhead is involved when self-
monitoring. In these tests only one counter event is being
read. We run 1024 tests and create boxplots that show the
25th and 75th percentiles, median, errorbars indicating one
standard deviation, and any additional outliers. The perfmon2
kernel has the best results, followed by perfctr. In general
all of the various perf event kernels perform worse, with a
surprising amount of inter-kernel variation. The outliers in the
graph (which affect standard deviation) we find to be due to
TLB and cache misses. The results shown were measured
on an older core2 machine (as perfctr and perfmon2 do not
support newer machines), but we find similar perf event results
on more recent platforms such as Intel Atom, Ivybridge, and
AMD Bobcat processors.

B. Read Overhead

When conducting measurements the most critical source
of overhead comes from read operations. While start and stop
are necessary, they can be pushed earlier or later (letting the
counter run in a free-running mode). Reads however must
happen in the area of interest, and often multiple reads are
done and stored for later analysis.

A performance counter read involves reading a low-level
processor register; these reads can be slow, often taking hun-
dreds of cycles. Some processors provide a method of allowing
users direct access to these registers (the rdpmc instruction
on x86); if that is not available then a register read involves a
privileged access and must go through the operating system’s
(slower) system call interface.

The read plot in Figure 1a shows the overhead of just
reading a performance counter value on a core2 machine.
perfctr has the lowest overhead by far, due to its use of the
rdpmc instruction. perfmon2 is not far behind, but all of the
perf event kernels lag. I ran many experiments to determine
the causes of the high perf event overhead.

1) Compiler: I first look at the compiler as a possible
source of overhead differences. In this paper I always use
gcc 4.4 compiled kernels for consistency unless otherwise
specified. This older version of the compiler is made necessary
because older kernel will not compile with newer gcc versions.

Figure 2 shows results found when varying the gcc version
(version 4.4, 4.6, 4.7 and 4.8). The ensuing variation is small
and thus not likely a factor with overhead.
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Fig. 2: Overhead boxplot of perf event read on core2 while
varying gcc version used to compile the Linux kernel. Com-
piler version does not majorly contribute to overhead.

2) Dynamic Frequency Scaling: At least on core2 systems
having Dynamic Frequency Scaling would alter the results
of my measurements. This is most likely due to the scaling
affecting the rdtsc instruction used for timing measurements.
To avoid this I disable frequency scaling on the test machines.

3) Dynamic vs Static Linking: I profiled the kernel at a
low-level in an attempt to find sources of overhead, only to
find that much of the overhead was coming from userspace.

Unlike previous implementations, perf event does not use
a custom system call to read the counters, but rather uses the
stock read() call. This is implemented by the C library,
which on Linux is typically dynamically linked. With such
a binary the read() symbol is not resolved until run time
at first use. This introduces the overhead of the dynamic
link (which can be considerable) into our measurements. This
is partly a limitation in the benchmark, but is a potential
real-world problem with actual performance measurements if
the executable’s first call to read() happens in the self-
monitoring instrumentation code.

To avoid this issue, one can statically link the executable
(using the -static compiler option) or else hard-code the
system call directly. The perfmon2 test does not see this
overhead as it uses a custom system call from a staticly linked
copy of the libpfm3 library. The perfctr test uses the rdpmc
instruction directly and no function calls at all are used during
a read.

Figure 3 shows that methods using static linking (static and
syscall static) improve the overhead results versus dynamic
linking, with results approaching the perfmon2 measurement
values.

4) rdpmc Instruction: The x86 architecture supports a
processor state flag that allows user programs direct, low-
overhead, access to the (usually restricted) performance
counter registers. Programs can read the counters without
having to go through the operating system.
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Fig. 3: Read results on various machines showing the overhead improvements gained using methods described in this paper.
Perfmon2 and perfctr support is not available for newer architectures.
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The perfctr interface explicitly uses rdpmc for counter
reads. Support for this was added to perf event with version
3.4 of the Linux kernel. To use rdpmc on perf event a helper
kernel page must first be mapped into the process address space
via mmap(). This mmap page contains information such as
which raw counter to read (counters can be moved around
due to multiplexing support) as well as how long the event
has been scheduled (also for multiplexing support). After the
mmap page is accessed for info, then the proper counter is
read via rdpmc. A unique number is provided in the mmap
page to allow verification that no overflows or other changes
have happened that will invalidate the result (if so the read
must be retried).

Our initial experiments found (to our great surprise) that
the perf event rdpmc code was no better, and in in some
cases worse, than the overhead of using the read system call.
This can be seen in Figure 4. After some investigation it was
found that the overhead happens because the first access to
the mmap’d kernel page causes a page-fault. Handling the
page-fault and mapping the data into the program’s address
space can take thousands of cycles. perfctr avoids this overhead
(despite also using a mmap page) by specifically inserting the
page directly into the process’ address space at initialization
time so no page fault is necessary.

The page fault behavior can be mitigated by either using
the MAP_POPULATE option to mmap() when creating the
page, or else by explicitly touching the page to bring it in at
creation time (rather than at first read time). Figure 3 shows
the improved performance when using these methods (rdpmc-
populate and rdpmc-touch). These methods entail much lower
overhead, on par with perfctr, despite needing two rdpmc calls
for perf event2.

5) Reading Multiple Times: The results presented so far
have shown read overhead when doing a single counter read.
Often a user will read multiple times, such as reading upon
each iteration of a loop. This spreads around the startup cost
and in general each subsequent read should mitigate the initial
high overhead. Figure 5 shows this effect happens when using
rdpmc but the behavior when using default read() based
measurements is more complex. Upon further investigation it
turns out that the subsequent read operations are causing L1
Data Cache misses which add extra overhead.

C. Start Overhead

As can be seen in the start graph in Figure 1b, the overhead
of start on perf event could be better. Events are started with
an ioctl() call which can trigger a lot of kernel work.

perfmon2 has impressively fast start code; costly setup
(such as event scheduling) is done in userspace and can
be done in advance. In contrast perf event’s expensive in-
kernel event scheduling happens at start time (instead of at
event creation). It is surprising that the perfctr results are not
better, but this could be due to its unusually complex interface
involving complicated ioctl arguments for start and stop.

2The perf event interface does not zero the counter at start time, so to
calculate the count rdpmc must be run before and after the instrumented
code and the difference calculated

Figure 6 shows the start overhead behavior on various x86
systems when optimized in the same way that reads were.
Using a statically linked binary helps with overhead (due to
dynamic linking overhead, as seen with read) but perfmon2
start overhead is still much lower.

D. Stop Overhead

The stop graph in Figure 1c shows the overhead of stopping
a counter on core2. The differences between implementations
are not as pronounced; the kernel does little besides telling
the CPU to stop counting. Still, perfctr and perfmon2 have
less overhead. This is not affected much by overhead reduc-
tion methodology, as shown in Figure 7. Static linkage does
not make as much difference because in our test the start
ioctl() call pays the price for dynamic linking and the
code is already set up when the stop ioctl() happens.

E. Varying number of events

The previous graphs look at overhead when measuring one
event at a time; Figure 8 show variation on Core2 as we
measure more than one event. On most implementations the
overhead increases linearly with more events, as the number
of MSR reads increases with the event count. perfctr does not
grow as fast because it has the ability to read the counters for
multiple events using only one memory page, while perf event
requires accessing a different mmap page for each event.

V. RELATED WORK

Previous performance counter investigations concentrate
either on the underlying hardware designs or on high-level
userspace tools; my work focuses on the often overlooked
intermediate operating system interface.

Mytkowicz et al. [34] explore measurement bias and
sources of inaccuracy in architectural performance measure-
ment. They use PAPI on top of perfmon and perfctr to in-
vestigate performance measurement differences while varying
the compiler options and link order of benchmarks. They
measure at the high level using PAPI and do not investigate
sources of operating system variation. Their work predates the
introduction of the perf event interface.

Zaparanuks et al. [35] study the accuracy of perfctr,
perfmon2, and PAPI on Pentium D, Core 2 Duo, and AMD
Athlon 64 X2 processors. They measure overhead using libpfm
and libperfctr directly, as well as the the low and high level
PAPI interfaces. They find measurement error is similar across
machines. Their work primarily focuses on counter accuracy
and variation rather than overhead (though these effects can
be related). They did not investigate the perf event subsystem
as it was not available at the time.

DeRose et al. [36] investigate performance counter varia-
tion and error on a Power3 system with regard to startup and
shutdown costs. They do not discuss the underlying operating
system interface.

Maxwell et al. [37], Moore et al. [38] and Salayandia [39]
investigate PAPI overhead, but they do not explore operating
system differences. Their work predates PAPI support for
perfmon2 or perf event.
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Fig. 5: core2 perf event read overhead showing the cost of repeated calls. One would expect the overhead to drop off; we find
that due to L1 Cache misses the behavior is more complex.
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Fig. 6: Time overhead of starting counters on various machines when using different overhead reduction methods.
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Fig. 7: Time overhead of stopping counters on various machines when using different overhead reduction methods.
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Zhang et. al [40] propose providing high-performance
counters directly to the operating system for use in scheduling
and other tasks. In this case the counters are not exposed to
the user, limiting usefulness in analysis or optimization.

VI. CONCLUSION AND FUTURE WORK

Performance counters are a key resource for finding and
avoiding system bottlenecks. Modern high performance archi-
tectures are complex enough that it is hard to create theoretical
models of performance; analysis is even more difficult when
using parallel code bases. The easiest way to gather detailed
actual performance data is via hardware performance coun-
ters. Low-overhead access to these counters is critical when
providing detailed performance measurements.

I investigate in detail the self-monitoring overhead of the
Linux perf event interface. I find that straightforward imple-
mentations of the interface (as used by PAPI) can have much
larger overhead than the previous perfmon2 and perfctr inter-
faces. I show that with some minimal changes the perf event
read overhead can be reduced to values that are competitive
with the previous interfaces; this involves using rdpmc for
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counter reads, pre-faulting in the mmap kernel page, and using
statically linked libraries.

I plan to use this knowledge to suggest improvements to
both user tools such as PAPI as well as the Linux kernel so that
the benefits of low-overhead measurements can be obtained
without extra user intervention. In addition I would like to
investigate overhead on other architectures such as Power and
ARM. Modern processors have underutilized advanced counter
implementations; the overhead of other interfaces (such as
AMD Lightweight Profiling) and other PMUs (such as Uncore
and Northbridge events) remain to be investigated.

All code and data used in this paper can be found at the fol-
lowing website: http://web.eece.maine.edu/∼vweaver/projects/
perf events/overhead/
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ZAM-IB-9816, 1998.

[19] H. Hoyer, “p5 performance counter MSR driver,” 1998.
[20] E. Hendriks, “PERF 0.7,” 1999.
[21] D. Heller, “Rabbit: A performance counters li-

brary for Intel/AMD processors and Linux,”
http://www.scl.ameslab.gov/Projects/Rabbit/index.html, 2001.

[22] J. Levon, “Oprofile,” http://oprofile.sourceforge.net, 2002.
[23] M. Pettersson, “The perfctr interface,” http://user.it.uu.se/∼mikpe/linux/

perfctr/2.6/, 1999.
[24] S. Eranian, “Perfmon2: a flexible performance monitoring interface for

Linux,” in Proc. 2006 Ottawa Linux Symposium, Jul. 2006, pp. 269–
288.

[25] T. Gleixner and I. Molnar, “Performance counters for Linux,” 2009.
[26] V. Weaver, “perf event open manual page,” in Linux Programmer’s

Manual, M. Kerrisk, Ed., Dec. 2013.
[27] W. Mathur and J. Cook, “Improved estimation for software multiplexing

of performance counting,” in Proc. 13th IEEE International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommuni-
cation Systems, Sep. 2005, pp. 23–34.

[28] W. Mathur, “Improving accuracy for software multiplexing of on-chip
performance counters,” Master’s thesis, New Mexico State University,
May 2004.

[29] R. Azimi, M. Stumm, and R. Wisniewski, “Online performance analysis
by statistical sampling of microprocessor performance counters,” in
Proc. 19th ACM International Conference on Supercomputing, 2005.

[30] T. Mytkowicz, P. Sweeney, M. Hauswirth, and A. Diwan, “Time
interpolation: So many metrics, so few registers,” in Proc. IEEE/ACM
41st Annual International Symposium on Microarchitecture, 2007, pp.
286–300.

[31] M. Casas, R. Badia, and J. Labarta, “Multiplexing hardware counters
by spectral analysis,” in Para 2010 - State of the Art in Scientific and
Parallel Computing, Jun. 2010.

[32] J. Treibig, G. Hager, and G. Wellein, “LIKWID: A lightweight
performance-oriented tool suite for x86 multicore environments,” in
Proc. of the First International Workshop on Parallel Software Tools
and Tool Infrastructures, Sep. 2010.

[33] J. Demme and S. Sethumadhavan, “Rapid identification of architectural
bottlenecks via precise event counting,” in Proc. 38th IEEE/ACM
International Symposium on Computer Architecture, Jun. 2011.

[34] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. Sweeney, “Producing
wrong data without doing anything obviously wrong!” in Proc. 14th
ACM Symposium on Architectural Support for Programming Languages
and Operating Systems, Mar. 2009.

[35] D. Zaparanuks, M. Jovic, and M. Hauswirth, “Accuracy of performance
counter measurements,” in Proc. IEEE International Symposium on
Performance Analysis of Systems and Software, Apr. 2009, pp. 23–32.

[36] L. DeRose, “The hardware performance monitor toolkit,” in Proc. 7th
International Euro-Par Conference, Aug. 2001, pp. 122–132.

[37] M. Maxwell, P. Teller, L. Salayandia, and S. Moore, “Accuracy of
performance monitoring hardware,” in Proc. Los Alamos Computer
Science Institute Symposium, Oct. 2002.

[38] S. Moore, D. Terpstra, K. London, P. Mucci, P. Teller, L. Salayandia,
A. Bayona, and M. Nieto, “PAPI deployment, evaluation, and exten-
sions,” in Proc. of User Group Conference, Jun. 2003.

[39] L. Salayandia, “A study of the validity and utility of PAPI performance
counter data,” Master’s thesis, The University of Texas at El Paso, Dec.
2002.

[40] X. Zhang, S. D. amd G. Folkmanis, and K. Shen, “Processor hardware
counter statistics as a first-class system resource,” in Proc. of the 11th
USENIX workshop on Hot topics in operating systems, 2007, pp. 226–
231.

10


