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Hardware Performance Counters

o Low-level CPU registers that measure architectural
events (cycles, instructions, cache misses, branch misses,
memory accesses, estimated power)

e Found on most modern CPUs, including all x86 and
most ARM
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Linux and Performance Counters

e Linux — operating system used everywhere, from
embedded phones to topb00 supercomputers

e Until Linux 2.6.31 (2009) no support for performance
counters; perfctr and perfmon2 required kernel patches.



Linux perf_event

e A lot of time was wasted trying to get perfmon2 merged.

e Meanwhile Molnar et al. implemented perf_event
interface from scratch and quickly got it merged.

e It took a few years, but perf_event now is mostly feature
complete, though it sometimes lags a bit with new CPU
releases (especially some of the esoteric new monitoring

features from Intel)
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perf_event Interface

e Very complex interface.
perf_event_open() system call has 40+ parameters.
It currently has the longest manpage of any syscall.

e Governing philosophy: do everything in the kernel.

e Most usage patterns are to open an event, then use
common calls like read(), ioctl(), poll() and
mmap () to gather results.
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What is the Overhead of the Interface?

e Overhead of the operating system interface.

e The overhead from enabling the hardware is usually
considered to be zero.

e Compare perf_event against perfctr and perfmon2
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Performance Counter Usage

e Aggregate Counts — total for entire run of a program
low overhead, low detail

e Sampled Execution — execution periodically interrupted
and stats logged for later analysis
variable overhead, medium detail

e Self Monitoring — calipers around exact code of interest
unknown overhead, high detail
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Self Monitoring

e Used by PAPI (Performance API), not perf

e Sample code

/* Event opened in advance with perf_event_open ()

/* start measurement *x/
ioctl (fd, PERF_EVENT_IOC_ENABLE, 0);

CODE OF INTEREST

/* stop measurement */
ioctl(fd, PERF_EVENT_IOC_DISABLE, 0);

/* read results x*/
read (fd, buffer, BUFFER_SIZE*sizeof (long long)) ;
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Machines Investigated

Processor Counters Available
ntel Atom Cedarview D2550 | 2 general 3 fixed
ntel Core2 P8700 2 general 3 fixed
ntel lvyBridge i15-3210M 4 general 3 fixec

AMD Bobcat G-T56N 4 genera
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Methodology

e Use rdtsc timestamp counter to measure overhead
e Disable DVFS frequency scaling
e Use same version of gcc (4.4) to compile all the kernels

e Code of interest is empty to avoid that affecting results
(start/stop/read with nothing intervening)

e Run test 1024 times, show boxplots
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Compiler effect on Kernel

core2 Overhead of Read with 1 Event

s Ll

2000

1000

Average Overhead (Cycles)

THE UNIVERSITY OF

m MAINE 10



Overhead Total (core2)

Overall Start/Stop/Read Overhead with 1 Event (core2)
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Overhead Start/Stop
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Overhead Read

Read Overhead with 1 Event (core2)
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What about using rdpmc?

g 8000 rdpmc Read Overhead with 1 Event (core2)
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Why are reads slow?

e Dynamic vs Static linking (first call to read)

e rdpmc — first access to mmap page causes pagefault
perfctr avoids this, pre-faults the page

For perf_event we can touch the page or use
MAP_POPULATE.
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Updated Read Overheads Core2

core2 Overhead of Read with 1 Event
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Updated Read Overheads All
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Overhead Mitigated by Successive Reads?
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Seems to be a Cache Issue
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rdpmc Results as Expected
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Scaling as we read Multiple Counters
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Conclusions

e The default self-monitoring overhead of perf_event is
high, but it can be mitigated.

e Read overhead can be vastly improved with proper setup.

e Start and stop overhead is higher than other
implementations, but this Is likely due to limitations
of the interface.
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Future Work

e Modify PAPI to use the improved rdpmc interface
e Explore non-x86 architectures

e Investigate overhead of aggregate and sampled
methodologies
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Questions?

vincent.weaverOmaine.edu

All code and data is available

http://web.eece.maine.edu/~vweaver/projects/perf_events/overhead

git://github.com/deater/perfevent_overhead.git
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