Self-monitoring Overhead of the
Linux perf_event Performance
Counter Interface

Vince Weaver
University of Maine

vincent.weaver@maine.edu

ISPASS 2015 — 30 March 2015

Hardware Performance Counters

o Low-level CPU registers that measure architectural
events (cycles, instructions, cache misses, branch misses,
memory accesses, estimated power)

e Found on most modern CPUs, including all x86 and
most ARM

THE UNIVERSITY OF
LJMAINE 1 WA A4

Linux and Performance Counters

e Linux — operating system used everywhere, from
embedded phones to topb00 supercomputers

e Until Linux 2.6.31 (2009) no support for performance
counters; perfctr and perfmon2 required kernel patches.

Linux perf_event

e A lot of time was wasted trying to get perfmon2 merged.

e Meanwhile Molnar et al. implemented perf_event
interface from scratch and quickly got it merged.

e It took a few years, but perf_event now is mostly feature
complete, though it sometimes lags a bit with new CPU
releases (especially some of the esoteric new monitoring

features from Intel)

THE UNIVERSITY OF
LJMAINE ; WA A4

perf_event Interface

e Very complex interface.
perf_event_open() system call has 40+ parameters.
It currently has the longest manpage of any syscall.

e Governing philosophy: do everything in the kernel.

e Most usage patterns are to open an event, then use
common calls like read(), ioctl(), poll() and
mmap () to gather results.

THE UNIVERSITY OF
CIMAINE : AA/

What is the Overhead of the Interface?

e Overhead of the operating system interface.

e The overhead from enabling the hardware is usually
considered to be zero.

e Compare perf_event against perfctr and perfmon2

THE UNIVERSITY OF
LJMAINE ; WA A4

Performance Counter Usage

e Aggregate Counts — total for entire run of a program
low overhead, low detail

e Sampled Execution — execution periodically interrupted
and stats logged for later analysis
variable overhead, medium detail

e Self Monitoring — calipers around exact code of interest
unknown overhead, high detail

THE UNIVERSITY OF
LJMAINE : WA A4

Self Monitoring

e Used by PAPI (Performance API), not perf

e Sample code

/* Event opened in advance with perf_event_open ()

/* start measurement *x/
ioctl (fd, PERF_EVENT_IOC_ENABLE, 0);

CODE OF INTEREST

/* stop measurement */
ioctl(fd, PERF_EVENT_IOC_DISABLE, 0);

/* read results x*/
read (fd, buffer, BUFFER_SIZE*sizeof (long long)) ;

THE UNIVERSITY OF

m MAINE ;

Machines Investigated

Processor Counters Available
ntel Atom Cedarview D2550 | 2 general 3 fixed
ntel Core2 P8700 2 general 3 fixed
ntel lvyBridge i15-3210M 4 general 3 fixec

AMD Bobcat G-T56N 4 genera

TTTTTTTTTTTTTTT

Methodology

e Use rdtsc timestamp counter to measure overhead
e Disable DVFS frequency scaling
e Use same version of gcc (4.4) to compile all the kernels

e Code of interest is empty to avoid that affecting results
(start/stop/read with nothing intervening)

e Run test 1024 times, show boxplots

THE UNIVERSITY OF
LJMAINE : WA A4

Compiler effect on Kernel

core2 Overhead of Read with 1 Event

s Ll

2000

1000

Average Overhead (Cycles)

THE UNIVERSITY OF

m MAINE 10

Overhead Total (core2)

Overall Start/Stop/Read Overhead with 1 Event (core2)

g 30000 I < x « < |
o X
> X X
9, ¥ X X X X X
T 20000 [TV S j_ < xoxox x .Ll J « 1
Q l i1 =
< l x
: s Pt THarat b4, s34 77T 12
S 10000 + | »
>
© -
g
< O T
TS D o> P A oD D Q Q Q QS .0
oo%%%%%‘b%%gxrp%v@@«%q \%\%\u\@ O AT
&“Q 0?0 0P 0P 9 0P g P B o7 Y 07 a7 07 o ot o o7 BN T, o)
Q)QQ% Linux Version
(b

THE UNIVERSITY OF

m MAINE 11

Overhead Start/Stop

Start Overhead with 1 Event (core2)
20000 - -

*

15000 | ;L | L X | 4
| 1T L lis . id1i+¢
10000 #%%4%%%TT%+%%T%T=&TTTT

5000 T
0 3

Average Overhead (Cycles)

X
T & o '\%q‘d““““ddd
G S F D> P DL D S 9 5> b 6 o> A® @ of %
O & 0707 07 07 07 07 07 ©

02 02 00 @7 B 5 Y o o 02 0 ot o g N NN X

%,

Q
2
@
@
@

& &V
Q>
Q;.‘DQ Q/Q') Linux Version
(z/.
Stop Overhead with 1 Event (core2)
@ 8000+
ko)
(&)
>
S 6000
S
Qo
g 4000 J- I i
> X x X x x o i $ o
(@) x
%2000*gLi*LTl+i%%*4i4;LT%l%%4#T
©
(O]
>
< 0 T
‘7/ > b‘ <o ‘b ’\ ‘b 9 N
\<°,Q S S S N RN N ’5 o7 o 07 07 5% 0% ot o7 o7N ‘b"\‘b\‘b\‘b
e
©> Q° Linux Version
(L.

IEX# THE UNIVERSITY OF

Uﬂ MAINE 12

Overhead Read

Read Overhead with 1 Event (core2)

® 8000
Q@
o
>
S 6000- s
e
©
(&)
£ 4000+ . | l X
2 i - : <14
= % x .
5 Lil- LLl Ledill||[=77+
o 2000- %'r;; F=1l+=+1d1 TT%TT T
® . s
()
>
< T T T TTTTTTTTTTTTTT LU
fz,\&%%v@@’\% O SIS SRERSRERCRS
F L 67 07 07 6”07 0 A® a° 02 v o° o A° o 0% % ¥ 0”0 00 ,6°,60° 0% &
N N AY N N7 N N N
Q@{\i(vQ@%b%@%@%‘b%‘b%‘b%‘b%‘b‘b‘b‘b‘b‘b‘b‘b‘b‘b‘b(b(b(b;b .(b. oY o o)
b{bq ® Linux Version
(}/.

THE UNIVERSITY OF

m MAINE 13

What about using rdpmc?

g 8000 rdpmc Read Overhead with 1 Event (core2)
2
S 6000
©
(3]
£ 4000+
GLJ x
S btiidarigt
& 2000+ L T = T wW * T W
& ks
)
> x
< 0 T
P DD O ADDS Q0 0. Q0 9,0 . 09,90.,.90.0 o O .9
S O P P Y P R o P T AT N 07 07 AT 9T 07,07 AT, ,0 L0 O
o & o’ o D o 0V 0,2 0 02 0,0 0t 0,2 02 AT AN KV XY A X2 X
Q{@WQ@@?’&@@%@W@%@%@%?D 7 7 27 67 07 07 af 6P 0 NN AT NI NN
(bQ'Q Q)(‘b Linux Version
o> vV

(1/.

THE UNIVERSITY OF

JMAINE 14

v

Why are reads slow?

e Dynamic vs Static linking (first call to read)

e rdpmc — first access to mmap page causes pagefault
perfctr avoids this, pre-faults the page

For perf_event we can touch the page or use
MAP_POPULATE.

THE UNIVERSITY OF
CIMAINE 15
. 4

Updated Read Overheads Core2

core2 Overhead of Read with 1 Event

3000 + §+
dll

2000-

Average Overhead (Cycles)

10001

THE UNIVERSITY OF

m MAINE 16

Updated Read Overheads All

core2 Overhead of Read with 1 Event bobcat Overhead of Read with 1 Event

4000 l 15000 -
x
2 g
< 30004 i T 9
> b > o x
e T l & 10000 3 -L
e} el i
8 j- -L 3 .L
£ 2000 w T S T T T
3 3
(o) (o) 4
S AL $ 5000
o 1000)
> >
< x < S ©
¥ e <
. - " . + + 1
T N — T T — T N T N < ¢ T T — T <
'b’-\ro 5(? \’Zr\o \'§0 Q@o 3{2}@ o\;}\ \’5&) 0&/ Q,{\c} ‘b"\ 601& ‘\’2’\\0 \Q}\o Qé\o 3,5@) 006Q \,§° 0& z{\é
IR SR A e IS N 6”27 &K F F K
oY P &SI @ Mo
o 2 & e IR SN o PO R R AN P N
SN B\ S SN N 5
o X 2O © ©° J \bQ N ©
o G o &V N G v
> K% K:
o
ivybridge Overhead of Read with 1 Event atom-cedarview Overhead of Read with 1 Event
20000+ | i

30004

15000+ i

10000

S
T

I R

Average Overhead (Cycles)
—
o

Average Overhead (Cycles)

1000 5000
I s @
i + = (= _L (= {=
0 T T T T T T T T T 0 T T T T T T - T T
. . J N : {
‘b\ %c?’ \’5\\0 \\\o @0 \’5@ Qé\ ,z,’\\o 0@, &S ‘b\% {70\ \q}\o \ID\O Q&o \'z}@ 06‘\ ‘@\\o 0@, {\6\
TN M S A S) £ 2 & O F & P
\Q},‘o K 0’2}\/ & Qo] & & {bq// & f‘b 0\\/ K QO N2 QQ) ‘bq;
O C A NP SR N S R o & et & R SN Lo
S\ A > Qf) S N > qf
o © < F T & o
N) Q N S Q
> O D R o g > R
o RS K5

IENE THE UNIVERSITY OF

ITD MAINE 17

Overhead Mitigated by Successive Reads?

THE UNIVERSITY OF

LJMAINE

Average Overhead (Cycles)

6000 -

4000 -

2000 -

core2 Overhead of Successive Read

ot
1

— rdpmc-touch-static
X b3 X X X

x
N

"I(i T T T T
Vv 2o) X 5] © A
Successive Counter Reads

18 VA A/

THE UNIVERSITY OF

LJMAINE

Average Overhead (Cycles)

Seems to be a Cache Issue

6000 -

4000 -

2000 -

core2 Overhead of Successive Read
X ~ x mm 3.18 ,
% — rdpmc-touch-static
X § —+— L1D$ miss x100
:

Successive Counter Reads

19

rdpmc Results as Expected

g

) I

S 150 core2 Overhead of Successive Read

5 1007 - g .)

6 : I == == == == == — —_—F
> 904

o) :

© 0.

2 N9 3 ¥ 6 8 A I 9 .9

Successive Counter Reads

THE UNIVERSITY OF

ITD MAINE 20

Scaling as we read Multiple Counters

THE UNIVERSITY OF

ITD MAINE

Average Time (Cycles)

25000
20000
15000-
10000-

5000-

/”

0
1234

3.18

core2 Overall Overhead

|

1234 1234
3.18 3.18-rdpmc Perfmon2
static static,touch

—=— Read Time

il

Stop Time
Start Time

AN

1234

1234

Perfctr

Simultaneous Events Being Measured

21

Conclusions

e The default self-monitoring overhead of perf_event is
high, but it can be mitigated.

e Read overhead can be vastly improved with proper setup.

e Start and stop overhead is higher than other
implementations, but this Is likely due to limitations
of the interface.

THE UNIVERSITY OF
[JIMAINE 2 RAA

Future Work

e Modify PAPI to use the improved rdpmc interface
e Explore non-x86 architectures

e Investigate overhead of aggregate and sampled
methodologies

THE UNIVERSITY OF
[JIMAINE 23 RAA

Questions?

vincent.weaverOmaine.edu

All code and data is available

http://web.eece.maine.edu/~vweaver/projects/perf_events/overhead

git://github.com/deater/perfevent_overhead.git

THE UNIVERSITY OF

UﬂhdAleE 24 VA A/

