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Abstract

This paper presents a scalable and adaptive decentral-
ized metadata lookup scheme for ultra large-scale file sys-
tems (≥ Petabytes or even Exabytes). Our scheme logically
organizes metadata servers (MDS) into a multi-layered
query hierarchy and exploits grouped Bloom filters to effi-
ciently route metadata requests to desired MDS through the
hierarchy. This metadata lookup scheme can be executed at
the network or memory speed, without being bounded by the
performance of slow disks. Our scheme is evaluated through
extensive trace-driven simulations and prototype implemen-
tation in Linux. Experimental results show that this scheme
can significantly improve metadata management scalability
and query efficiency in ultra large-scale storage systems.

1 Introduction
Metadata management is critical in scaling the overall

performance of large-scale data storage systems [1]. To
achieve high data throughput, many systems decouple meta-
data transactions from file content accesses by diverting
large volumes of data traffic away from dedicated meta-
data servers (MDS) [2]. In such systems, a client contacts
MDS first to acquire access permission and obtain desired
file metadata, such as file location and attributes, and then
directly accesses file content stored on data servers with-
out going through the metadata server. While the storage
demand increases exponentially in recent years, exceeding
petabytes (1015) already and reaching exabytes (1018) soon,
such decoupled design with a single metadata server can still
become a severe performance bottleneck. It has been shown
that metadata transactions account for over 50% of all file
system operations [3]. In scientific or other data-intensive
applications [4], the file size ranges from a few bytes to mul-
tiple terabytes, resulting in millions of pieces of metadata in
directories [5]. Thus, scalable and decentralized metadata
management schemes have been proposed to scale up the
metadata throughput by judiciously distributing heavy man-
agement workloads among multiple metadata servers while
maintaining a single writable namespace image.

One of the most important issues in distributed meta-

data management is to provide efficient metadata query ser-
vice. Existing query schemes can be classified into two cat-
egories: probabilistic lookup and deterministic lookup. In
the latter, no broadcasting is used at any point in the query
process. For example, a deterministic lookup typically in-
curs a traversal along a unique path within a tree-structured
global directory. The probabilistic approach employs lossy
data representations, such as Bloom filters [6], to route a
metadata request to its target MDS with a very high accu-
racy. Certain remedy strategy, such as broadcasting or mul-
ticasting, is needed for rectifying incorrect routing. Com-
pared with the deterministic approach, the probabilistic one
can be easily adopted in distributed systems and allows flex-
ible workload balance among metadata servers.

A large-scale distributed file system must provide a fast
and scalable metadata lookup service. In large-scale storage
systems, multiple metadata servers are desirable for improv-
ing scalability. The proposed scheme in this paper, called
Group-based Hierarchical Bloom filter Array (G-HBA), ju-
diciously utilizes Bloom filters to efficiently route requests
to target metadata servers. Our G-HBA scheme extends our
previous Bloom filter-based architecture by considering dy-
namic and self-adaptive characteristics of ultra large-scale
file systems.

We utilize an array of Bloom filters on each MDS to sup-
port distributed metadata management of multiple MDSs.
An MDS where a file’s metadata resides is called the home
MDS of this file. Each metadata server further constructs a
Bloom filter to represent all files whose metadata are stored
locally and then replicates this Bloom filter to all other
MDSs. A metadata request from a client can randomly
choose an MDS to perform membership query against its
Bloom filter array that includes replicas of the Bloom filters
from all other MDSs. The Bloom filter array returns a hit
when exactly one filter gives a positive response. A miss
takes place when zero hit or multiple hits are found in the
array. Since we assume that original metadata can be stored
only in one MDS, multiple hits, meaning that original meta-
data are found in multiple MDSs, indicate a query miss.

The basic idea behind G-HBA in improving scalability
and query efficiency is to decentralize metadata manage-
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ment among multiple groups of MDSs. We divide all N
MDSs in the system into multiple groups with each group
containing at most M MDSs. Note that we represent the ac-
tual number of MDSs in a group as M′. By judiciously using
space-efficient data structures, each group can provide an
approximately complete mapping between individual files
and their home MDSs for the whole storage system. While
each group can perform fast metadata queries independently
to improve the metadata throughput, all MDSs within one
group only store a disjointed fraction of metadata and they
cooperate with each other to serve an individual query.

G-HBA utilizes Bloom filter (BF) based structures to
achieve high scalability and space efficiency. These struc-
tures are replicated among MDS groups and each group
contains approximately the same amount of replicas for load
balance. While each group maintains file metadata location
information of the entire system, each individual MDS only
stores information of its own local files and BF replicas from
other groups. Within a given group, different MDSs store
different replicas and all replicas in this group collectively
constitute a global mirror image of the entire file system.
Specifically, a group consisting of M′ MDSs needs to store
a total of N−M′ BF replicas from the other groups and each
MDS in this group maintains approximately N−M′

M′ replicas
plus the BF for its own local file information.

The rest of the paper is organized as follows. Section 2
presents the basic scheme of G-HBA and its design issues.
The performance evaluation based on trace-driven simula-
tions and prototype implementation are given in Section 3
and Section 4, respectively. Section 5 summarizes related
work and Section 6 concludes the paper.

2 G-HBA Design

In this section, we present a novel approach, called
Group-based Hierarchical Bloom filter Array (G-HBA),
to carry out scalable and adaptive metadata management,
specifically to facilitate fast membership queries in ultra
large-scale storage systems.

2.1 Group-based HBA Scheme

Figure 1 shows the overall scheme of our G-HBA. A
query process at one MDS may involve four hierarchical
levels: (1) searching the locally stored LRU BF Array (L1),
(2) searching the locally stored Segment BF Array (L2), (3)
multicasting to all MDSs in the same group to concurrently
search all Segment BF Arrays stored in this group (L3), and
(4) multicasting to all MDSs in the system to directly search
requested metadata (L4). The multi-level metadata query is
designed to judiciously exploit access locality and dynami-
cally balance load among MDSs.

Each query is performed sequentially in these four levels.
A miss at one level will lead to a query to the next higher
level. The query starts at the LRU BF array (L1), which

aims to accurately capture the temporal access locality in
metadata traffic streams. If the query cannot be successfully
served at L1, the query is then performed at L2, as shown
in Figure 1(a). The segment BF array (L2) stored on MDS
i includes only θi BF replicas, with each replica represent-
ing all files whose metadata are stored on that corresponding
MDS. Suppose that the total number of MDS is N, and typ-
ically θi is much smaller than N. And we have ∑M′

i=1 θi = N.
In this way, each MDS only maintains a subset of all replicas
available in the systems. A lookup failure at L2 will lead to
a query multicast among all MDSs within the current group
(L3), as shown in Figure 1(b). At L3, all BF replicas avail-
able in this group will be checked. At the last level of the
query process, i.e., L4, each MDS directly performs lookup
by searching its local BF and disk drives. If the local BF
responds negatively, the requested metadata is not stored lo-
cally on that MDS since the local BF has no false negatives.
However, if the local BF responses positively, a disk access
is then required to verify the existence of requested metadata
since the local BF can potentially generate false positives.

2.2 Critical Path

The critical path of a metadata query starts at L1. When
the L1 Bloom filter array returns a unique hit for the mem-
bership query, the target metadata is then most likely to be
found at the MDS whose LRU Bloom filter generates such
a unique hit. If zero or multiple hits take place at L1, imply-
ing a query failure, the membership query is then performed
on the L2 segment Bloom filter array, which maintains map-
ping information for a fraction of the entire storage system
by approximately storing θ = �N−M′

M′ � replicas. A unique
hit in any L2 segment Bloom filter array does not neces-
sarily indicate a query success since (1) Bloom filters only
provide probabilistic membership query and a false posi-
tive may occur with a very small probability, and (2) each
MDS only contains a subset of all replicas and thus is only
knowledgeable of a fraction of the entire file-server map-
ping. The penalty for a false positive, where a unique hit
fails to correctly identify the home MDS, is that a mul-
ticast must be performed within the current MDS group
(L3) to solve this miss-identification. The probability of a
false positive from the segment Bloom filter array of one
MDS, f +

g , is f +
g = C1

θ f0(1 − f0)θ−1 = θ (0.6185)m/n(1−
(0.6185)m/n)θ−1, where θ is the number of BF replicas
stored locally on one MDS, m/n is the Bloom filter bit ratio,
i.e., the number of bits per file, and f0 is the optimal false
rate in standard Bloom filters [7]. By storing only a small
subset of all replicas and thus achieving significant memory
space savings, the group-based approach (segment Bloom
filter array) can afford to increase the number of bits per
file (m/n) so as to significantly decrease the false rate of its
Bloom filters, hence rendering f +

g sufficiently small.
When the segment Bloom filter of an MDS returns zero

or multiple hits for a given metadata lookup, indicating a
local lookup failure, this MDS then multicasts the query re-
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Figure 1. The group-based HBA architecture allowing the multi-level query.

quest to all MDSs in the same group, in order to resolve this
failure within this group. Similarly, a multicast is necessary
among all other groups, i.e., at the L4 level, if the current
group returns zero or multiple hits at L3.

2.3 Updating Replica

Updating stale Bloom filter replicas involves two steps,
replica identification (localization) and replica content up-
date. Within each MDS group, a BF replica resides exclu-
sively on one MDS. Furthermore, the dynamic and adaptive
nature of server reconfiguration, such as MDS insertion into
or deletion from a group, dictates that a given replica must
often migrate from one MDS to another within a group.
Thus, to update a BF replica, we must correctly identify the
target MDS in which this replica currently resides. This
replica location information is stored in an identification
(ID) Bloom filter array (IDBFA) that is maintained in each
MDS. A unique hit in IDBFA returns the MDS ID, thus al-
lowing the update to proceed to the second step, i.e., updat-
ing BF replica at the target MDS. Multiple hits in IDBFA
lead to a light false positive penalty since a falsely identified
target MDS can simply drop the update request after failing
to find the targeted replica. The probability of such a false
positive can be extremely low. Counting Bloom filters are
used in IDBFA to support server departure. Since IDBFA
only maintains the information about where a replica can be
accessed, the total storage requirement of IDBFA is negligi-
ble.

G-HBA does not use modular hashing to determine the
placement of the newest replica within one MDS group. A
main reason is that this approach cannot efficiently support
dynamic MDS reconfiguration, such as an MDS joining or
leaving the storage system. When the number of servers
changes, the hash-based re-computations can potentially as-
sign a new target MDS for each existing replica within the
same group. Accordingly, the replica would have to be mi-
grated from the current target MDS to a new one in the
group, incurring forbidden network overheads potentially.

2.4 Light-weight Migration

Within each group, IDBFA can facilitate load balance
and support light-weight replica migration during group
reconfiguration. When a new MDS joins the system, it
first joins a group that has less than M MDSs, then ac-
quires an appropriate amount of BF replicas, and finally off-
loads some management tasks from the existing MDSs in
this group. Specifically, each existing MDS can randomly
offload Number(CurrentReplicas)−�(N −M′)/(M′ + 1)�
replicas to the new MDS. Meanwhile, the MDS IDs of repli-
cas migrating to the new MDS need to be deleted from their
original ID Bloom filters and inserted into the ID Bloom fil-
ter on the new MDS. Any modified Bloom filter in IDBFA
also needs to be sent to the new MDS, which forms a new
IDBFA containing updated information of replica location.
This new IDBFA is then multicast to other MDSs. In this
way, we can implement a light-weight replica migration and
achieve load balance among multiple MDSs of a group.

An MDS departure triggers a similar process but in a re-
verse direction. It involves (1) migrating replicas previously
stored on the MDS to the other MDSs within that group, (2)
removing its corresponding Bloom filter from the IDBFA on
each MDS, and (3) sending a message to the other groups
to delete its replica. The network overhead of this design is
small since group reconfiguration happens infrequently and
the size of IDBFA is small.

2.5 Optimal Group Configuration

One of our key design issues in G-HBA is to identify the
optimal M, i.e., the maximum number of MDSs allowed in
one group. M can strike different tradeoffs between storage
overhead and query latency. As M increases, the average
number of replicas stored on one MDS, represented as N−M

M ,
is reduced accordingly. A larger M, however, typically leads
to a larger penalty for the cases of false positives as well as
zero or multiple hits at both the L1 and L2 arrays. This is
because multicasts are used to resolve these cases and a mul-
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ticast typically takes longer when more hops are involved.
In what follows we discuss how to find the optimal M.

To identify the optimal M, we use a simple benefit func-
tion that jointly considers storage overheads and throughput.
Specifically, we aim to optimize the throughput benefits per
unit memory space invested, a measure also called the nor-
malized throughput. The throughput benefit is represented
by taking into account the latency that includes all delays
of actual operations, such as queuing, routing and memory
retrieval. Equation 1 shows the function to evaluate the nor-
malized throughput of G-HBA.

Γ =
UG-HBA(throu.)
UG-HBA(space)

=
1

UG-HBA(laten.)∗UG-HBA(space)
(1)

where UG-HBA(space) and UG-HBA(laten.) represent the
storage overhead and operation latency, respectively.

The storage overhead for G-HBA is represented in Equa-
tion 2, which is associated with the numbers of stored repli-
cas on each MDS.

UG-HBA(space) =
N −M

M
(2)

We then examine the operation latency, shown in Equa-
tion 3 for G-HBA, by considering multi-level hit rates that
may lead to different delays. Definitions for the variables
used in Equation 3 are given in Table 1.

UG−HBA(laten.) = DLRU +(1−PLRU )DL2 +

(1−PLRU )(1− PL2

M
)Dgroup +

(1−PLRU )(1− PL2

M
)MDnet. (3)

Table 1. Symbol representations.
Symbol Description

PLRU Unique hit rate in the LRU Bloom filters
PL2 Unique hit rate in the 2nd level Bloom filters

DLRU Latency in the LRU Bloom filters
DL2 Latency in the 2nd level Bloom filters

Dgroup Latency in one group
Dnet. Latency in entire multicast network

The optimal value for M thus is the one that maximizes
the Gamma function in Equation 1.

3 Performance Evaluation

We examine the performance of G-HBA through trace-
driven simulation and compare it with HBA [8], the state-
of-the-art BF-based metadata management scheme and one
that is directly comparable to G-HBA. We use three publicly
available traces, i.e., Research Workload (RES), Instruc-
tional Workload (INS) [3] and HP File System Traces [9]. In
order to emulate the I/O behaviors in an ultra large-scale file
system, we choose to intensify these workloads by a combi-
nation of spatial scale-up and temporal scale-up in our sim-
ulation and also in prototype experiments presented in the

next section. We decompose a trace into subtraces and in-
tentionally force them to have disjoint group ID, user ID and
working directories by appending a subtrace number in each
record. The timing relationships among the requests within
a subtrace are preserved to faithfully maintain the seman-
tic dependencies among trace records. These subtraces are
replayed concurrently by setting the same start time. Note
that the combined trace maintains the same histogram of
file system calls as the original trace but presents a heavier
workload (higher intensity) as shown in Ref. [8, 10]. As a
result, the metadata traffic can be both spatially and tempo-
rally scaled up by different factors, depending on the num-
ber of subtraces replayed simultaneously. The number of
subtraces replayed concurrently is denoted as Trace Inten-
sifying Factor (TIF). The statistics of our intensified work-
loads are summarized in Table 2 and Table 3. All MDSs are
initially populated randomly. Each request can randomly
choose an MDS to carry out query operations.

Table 2. Scaled-up RES and INS traces.
RES (TIF=100) INS (TIF=30)

hosts 1300 570
users 5000 9780

open (million) 497.2 1196.37
close (million) 558.2 1215.33
stat (million) 7983.9 4076.58

Table 3. Scaled-up HP traces.
Original TIF=40

requests (million) 94.7 3788
active users 32 1280

user accounts 207 8280
active files (million) 0.969 38.76
total files (million) 4.0 160.0

The INS and RES traces are collected in two groups of
Hewlett-Packard series 700 workstations running HP-UX
9.05. The HP File System trace is a 10-day trace of all file
system accesses with a total of 500GB of storage and was
updated last on Aug 9, 2002. Since these three traces above
have collected all I/O requests at the file system level, we fil-
ter out requests, such as read and write, that are not related
to the metadata operations.

We have developed a trace-driven simulator to emulate
dynamic behaviors of large-scale metadata operations and
evaluate the performance in terms of hit rates, query de-
lays, network overheads of replica migrations and response
times for updating stale replicas. The simulation study in
this paper will focus on the increasing demands for ultra
large-scale storage systems, such as Exabyte-scale storage
capacity, in which a centralized BF-based approach such as
the HBA scheme [8] will be forced to spill significant por-
tions of replicas into the disk space as the fast increasing
number of replicas overflow the main memory space.
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Figure 2. Normalized throughput of G-HBA
when the total number of MDSs is 30 and 100
MDSs, respectively.

3.1 Impact of Group Size M on Perfor-
mance

In this section, we present the details of identifying the
optimal value of group size M by optimizing the normalized
throughput of G-HBA given in Equation 1. We generate the
normalized throughput with the aid of simulation results, in-
cluding hit rates and latency of multi-level query operations.
Other simulation results are directly measured by statistical
average values from twenty simulation runs.

The maximum group size, M, can potentially have a sig-
nificant impact on the system performance of G-HBA in
terms of hit rates and query latency. While a larger M may
save more memory space, as each MDS in G-HBA only
needs to store N−M

M BF replicas, it can increase the query
latency since fewer Bloom filters on each MDS can reduce
local query hit rates at the L2 level. Therefore, an optimal
M has to be identified.

Figures 2 shows the normalized throughput of space sav-
ings when the numbers of MDSs are 30 and 100, respec-
tively, under the intensified HP, RES and INS workloads.
The optimal M is 6 for HP and INS, and 5 for RES when
the number of MDSs is 30. The optimal M is 9 for HP and
INS, and 8 for RES when the number of MDSs is scaled up
to 100.

Figure 3 further shows the relationship between the op-
timal group size M and the total number of MDSs. We ob-
serve that M is not very sensitive to the workloads studied in
this paper. In addition, when the number of MDSs is large,
the optimal M value does not change significantly. These
observations give us useful insights when determining the
logical grouping structure for ultra large-scale storage sys-
tems. It is recommended that some predefined M be used
initially and this sub-optimal M be deployed until the total
number of MDSs changes and reaches some threshold.
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Figure 3. Optimal group size as a function of
the number of nodes.

3.2 Average Latency

Figures 4(a), 4(b) and 4(c) plot the average latency of
metadata operations as a function of the operation intensity
(number of operations) under the HP, RES and INS work-
loads, respectively. We utilize different memory sizes to
evaluate the operation latency. With large memory, such as
1.2GB in Figure 4(a), 800MB in Figure 4(b) and 900MB in
Figure 4(c), HBA outperforms G-HBA slightly since HBA,
being able to store all the replicas in the main memory, is
able to complete all operations within the memory locally
while G-HBA must examine replicas stored in other MDSs
of the same group. However, as the available memory size
decreases, the average latency of the HBA scheme increases
rapidly since more disk accesses are involved to store or re-
trieve BF replicas. In contrast, G-HBA demonstrates the ad-
vantage of its space efficiency, as each MDS only needs to
maintain a small subset of all replicas, i.e., N−M′

M′ replicas,
enabling most, if not all, of the replicas to be stored in the
memory and thus outperforming HBA significantly.

3.3 Overhead of MDS Group Reconfigu-
ration

Figure 5 shows the overhead of adding a new MDS to
the system, in terms of the amount of replica migration traf-
fic, for HBA, hash placement, and G-HBA schemes. When
a new MDS joins a system with N MDSs, HBA needs to
migrate all existing N replicas to the new MDS, to main-
tain a global mirror image containing all metadata location
information of the entire file system.

Hash placement, as discussed in Section 2.3, needs to
re-compute the locations (target MDSs) for (N −M′) repli-
cas. Whenever the new position differs from the current
one, a migration has to be performed. The number of repli-
cas that need to be migrated is bounded by (N −M′). When
the number of MDSs increases, the probability of mismatch
also increases, resulting in more replicas being migrated.
G-HBA only needs to migrate approximate N−M′

M′+1 replicas
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Figure 4. Average latency comparisons under three traces.
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to the newly inserted MDS and thus significantly reduces
network overheads in ultra large-scale file systems.

3.4 Latency of Updating Stale Replicas

Figures 6 shows the average latency of updating stale
replicas under the three traces. In HBA, a replica update,
initiated from any MDS, triggers a system-wide multicast
to update all MDSs in the system. In G-HBA, however, we
only need to update the stale replica in each group (i.e., one
MDS in each group), making G-HBA faster and more effi-
cient.

3.5 Query Hit Rate

Figure 7 shows the hit rates of G-HBA as the number of
MDSs increases. We examine the hit rates based on the four-
level query critical path presented in Section 2.2. A query
checks L1 first. If zero or multiple hits occur, L2 is checked.
A miss in L2 will lead to a lookup in L3. Finally, if the query
against L3 still fails, we multicast the query message within
the entire file system (i.e.,L4) to obtain query results where
every MDS in the system checks the query against its local
Bloom filter. Since L1, i.e., the LRU Bloom filter array, is
able to efficiently exploit the temporal locality of file access

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

HBA (HP, N=100)
G-HBA (HP, N=100, M=9)
HBA (HP, N=30)
G-HBA (HP, N=30, M=6)
HBA (RES, N=100)
G-HBA (RES, N=100, M=9)

HBA (RES, N=30)
G-HBA (RES, N=30, M=5)
HBA (INS, N=100)
G-HBA (INS, N=100, M=9)
HBA (INS, N=30)
G-HBA (INS, N=30, M=6)

Number of update requests

A
v

e
ra

g
e

 la
te

n
c

y
 (

m
s

)

Figure 6. Latency of updating stale replicas of
HBA and G-HBA schemes.

patterns, a large number of queries to the other levels are
filtered out by L1. Our experiments shows that more than
80% of query operations can be successfully served by L1
and L2. With the help of L3, more than 90% requests are
absorbed internally within one group, even with a system of
100 MDSs.

It is also observed that the percentage of queries served
by L4 increases as the number of MDSs increases. This is
because false positives and false negatives increase in a large
system due to the large amount of stale replicas under the
same constraints of network overheads [10]. The staleness
is caused by non-real-time updating in real systems. Here,
a false positive happens when a request returns an MDS ID
that actually does not have the requested metadata. A false
negative means that a query request fails to return an MDS
ID that actually holds the requested metadata.

The final L4 query can provide guaranteed query services
by multicasting query messages within the entire system.
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Since the operations take place in local MDSs, there are no
false positives and negatives from stale data in distributed
environments. Thus, if we still have multiple hits, they must
come from Bloom filters themselves. Associated operations
in a local MDS need to first check local Bloom filters that
reside in memory, to determine whether the MDS may ob-
tain the query result. If local hits take place, further check-
ing may involve lookups on disk to conduct lookups on real
data. Or else, we definitely know the queried data is non-
existing. Although the L4 operations require more costs,
the probability of such operations is very small as shown in
our experiments.

Our design can provide fail-over support when an MDS
departs or fails. Heart-beats are exchanged periodically
among MDSs within each group. Once an MDS failure is
detected, the corresponding Bloom filters are removed from
the other MDSs to reduce the number of false positives.
This design is desirable in real systems since the metadata
service still remains functional when some MDSs fail, albeit
at a degraded performance and coverage level.

4 Prototype Implementation and Evaluation

We have implemented the proposed G-HBA structure
running on a Linux environment that consists of 60 nodes,
each equipped with Intel Core 2 Duo CPU and 1GB mem-
ory. Each node in the system serves as an MDS. We di-
vide the storage system into groups based on the optimal M
value of 7 obtained through the optimal value calculation
described in Sections 2.5 and 3.1. Thus, each group can
maintain at most 7 MDSs. We choose to use the HP traces
that are scaled up with a factor of 60 using the scaling ap-
proach described in Section 3.

4.1 Lookup Latency

Figure 8 shows the experimental results in terms of query
latency under the intensified HP traces. The results from our
prototype, consistent with the simulations in Section 3.2,
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Figure 8. Average query latency using inten-
sified HP traces.

further prove the efficiency of our proposed G-HBA struc-
ture. G-HBA can decrease the query latency of HBA by up
to 31.2% under the heaviest workload in our experiments,
demonstrating its scalability.

4.2 Memory Overhead Per MDS

We utilize the relative memory requirement normalized
to a pure Bloom Filter Array with a bit/file ratio of 8 (BFA8)
to facilitate fair comparisons. The basic idea of Bloom Filter
Array (BFA) is to build a Bloom filter for each MDS to rep-
resent all files stored locally and then replicate this Bloom
filter to all other MDSs. Thus, each MDS stores a BFA
that consists of all Bloom filters including its local filter and
the replicas of the Bloom filters from all other MDSs. A
metadata request can obtain lookup results from a randomly
selected MDS based on the membership query on all Bloom
filters. This is the basic approach adopted by HBA where an
additional LRU Bloom filter array is added, exploiting the
temporal locality of file access patterns to reduce the meta-
data operation time.

Each BFA maintains a global image of the entire system
and HBA needs to maintain an extra LRU Bloom filter ar-
ray. G-HBA utilizes the group-based scheme to reduce space
overhead and MDS insertion/deletion overhead. Table 4
shows a comparison among BFA8, BFA16, HBA and G-
HBA in terms of normalized memory requirement per MDS
as a function of the number of metadata servers. Clearly, G-
HBA has a significantly lower memory overhead than both
BFA and HBA and its memory overhead decreases as the
number of MDSs increases.

5 Related Work

In large-scale storage architectures, the design for meta-
data partitioning among metadata servers is of critical im-
portance for supporting efficient metadata operations, such
as reading, writing and querying items. Directory subtree
partitioning and pure hashing are two common techniques
used for managing metadata, including NFS [11], Coda [12]
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Table 4. Relative space overhead normalized
to BFA with a ratio of 8 in HP traces.

Server # BFA 8 BFA 16 HBA G-HBA

20 1.0 2.0 1.0002 0.2002
40 1.0 2.0 1.0004 0.1670
60 1.0 2.0 1.0006 0.1434
80 1.0 2.0 1.0008 0.1258
100 1.0 2.0 1.0010 0.1121

and RAMA [13]. However, they suffer from concurrent ac-
cess bottlenecks. Due to space limitation, other details can
refer to our technical report [14].

Bloom filter, as a space-efficient data structure, can sup-
port query (membership) operations with O(1) time com-
plexity since a query operation needs to probe constant-
scale bits. Standard Bloom filters [6] have inspired many
extensions and variants, including the counting Bloom fil-
ters [15], Multi-Dimension Dynamic Bloom Filters (MD-
DBF) [16] and Parallel Bloom Filters (PBF) [17]. When-
ever space is a concern, a Bloom filter can be an excellent
alternative to storing a complete explicit list.

6 Conclusion

This paper presents a scalable and adaptive metadata
lookup scheme named Group-based Hierarchical Bloom fil-
ter Arrays (G-HBA) for ultra large-scale file systems. G-
HBA organizes MDSs into multiple logical groups and uti-
lizes grouped Bloom filter arrays to efficiently direct a meta-
data request to its target MDS. The novelty of G-HBA lies in
that it judiciously limits most of metadata query and Bloom
filter update traffic within in an MDS group. Compared with
HBA, G-HBA is more scalable. Extensive trace-driven sim-
ulations and real prototype implementations show that our
G-HBA is highly effective and efficient in improving the per-
formance, scalability and adaptability of the metadata man-
agement for ultra large-scale file systems.
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