
SmartStore: A New Metadata Organization Paradigm with
Semantic-Awareness for Next-Generation File Systems

Yu Hua∗ Hong Jiang† Yifeng Zhu‡ Dan Feng∗� Lei Tian∗†

∗Huazhong Univ. of Sci. & Tech. †Univ. of Nebraska-Lincoln ‡Univ. of Maine
Wuhan, China Lincoln, NE, USA Orono, ME, USA

{csyhua, dfeng, ltian}@hust.edu.cn {jiang, tian}@cse.unl.edu zhu@eece.maine.edu

ABSTRACT
Existing storage systems using hierarchical directory tree do not
meet scalability and functionality requirements for exponentially
growing datasets and increasingly complex queries in Exabyte-level
systems with billions of files. This paper proposes semantic-aware
organization, called SmartStore, which exploits metadata seman-
tics of files to judiciously aggregate correlated files into semantic-
aware groups by using information retrieval tools. Decentralized
design improves system scalability and reduces query latency for
complex queries (range and top-k queries), which is conducive to
constructing semantic-aware caching, and conventional filename-
based query. SmartStore limits search scope of complex query to
a single or a minimal number of semantically related groups and
avoids or alleviates brute-force search in entire system. Extensive
experiments using real-world traces show that SmartStore improves
system scalability and reduces query latency over basic database
approaches by one thousand times. To the best of our knowledge,
this is the first study implementing complex queries in large-scale
file systems.

1. INTRODUCTION
Fast and flexible metadata retrieving is a critical requirement in

the next-generation data storage systems serving high-end com-
puting [1]. As the storage capacity is approaching Exabytes and
the number of files stored is reaching billions, directory-tree based
metadata management widely deployed in conventional file sys-
tems [2, 3] can no longer meet the requirements of scalability and
functionality. For the next-generation large-scale storage systems,
new metadata organization schemes are desired to meet two criti-
cal goals: (1) to serve a large number of concurrent accesses with
low latency and (2) to provide flexible I/O interfaces to allow users
to perform advanced metadata queries, such as range and top-k
queries, to further decrease query latency.

In the next-generation file systems, metadata accesses will very
likely become a severe performance bottleneck as metadata-based
transactions not only account for over50% of all file system op-
erations [4, 5] but also result in billions of pieces of metadata in
directories. Given the sheer scale and complexity of the data and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage, and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SC09 November 14-20, 2009, Portland, Oregon, USA
(c) 2009 ACM 978-1-60558-744-8/09/11 ...$10.00.

metadata in such systems, we must seriously ponder a few critical
research problems [6, 7] such as “How to efficiently extract useful
knowledge from an ocean of data?", “How to manage the enor-
mous number of files that have multi-dimensional or increasingly
higher dimensional attributes?", and “How to effectively and expe-
ditiously extract small but relevant subsets from large datasets to
construct accurate and efficient data caches to facilitate high-end
and complex applications?". We approach the above problems by
first postulating the following.

• First, while a high-end or next-generation storage system can
provide a Petabyte-scale or even Exabyte-scale storage ca-
pacity containing an ocean of data, what the users really want
for their applications is some knowledge about the data’s be-
havioral and structural properties. Thus, we need to deploy
and organize these files according to semantic correlations of
file metadata in a way that would easily expose such proper-
ties.

• Second, in real-world applications, cache-based structures
have proven to be very useful in dealing with indexing among
massive amounts of data. However, traditional temporal or
spatial (or both) locality-aware methods alone will not be ef-
fective to construct and maintain caches in large-scale sys-
tems to contain the working datasets of complex data-intensive
applications. It is thus our belief that semantic-aware caching,
which leverages metadata semantic correlation and combines
pre-processing and prefetching that is based on range queries
(that identify files whose attributes values are within given
ranges) and top-k Nearest Neighbor (NN) queries1 (that lo-
catek files whose attributes are closest to given values), will
be sufficiently effective in reducing the working sets and in-
creasing cache hit rates.

Although state-of-the-art research, such as Spyglass [8], reveals
that around 33% of searches can be localized into a subspace by ex-
ploiting the namespace property (e.g., home or project directory),
it clearly indicates that a larger portion of queries must still be an-
swered by potentially searching the entire file system in some way.
The lack of effectiveness of exploiting spatial and temporal locali-
ties alone in metadata queries lies in the fact that such kind of lo-
calities, while generally effective in representing some static prop-
erties (e.g., directory and namespace) and access patterns of files,
fail to capture higher dimensions of localities and correlations that
are essential for complex queries. For example, after installing or
updating software, a system administrator may hope to track and

1Given a clear context in the paper, we will simply use top-k
queries in place of top-k NN queries.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC09 November 14-20, 2009, Portland, Oregon, USA.
Copyright 2009 ACM 978-1-60558-744-8/09/11 ...$10.00.

find the changed files, which exist in both system and user directo-
ries, to ward off malicious operations. In this case, simple temporal
(e.g., access history) or spatial locality (e.g., directory or names-
pace) alone may not efficiently help identify all affected files, be-
cause such requests for a complex query (range or top-k query) in
turn need to check multi-dimensional attributes.

In a small-scale storage system, conventional directory-tree based
design and I/O interfaces may support these complex queries through
exhaustive or brute-force searches. However, in an Exabyte-scale
storage system, complex queries need to be judiciously supported
in a scalable way since exhaustive searches can result in prohibitively
high overheads. Bigtable [9] uses a static three-level B+-tree-like
hierarchy to store tablet location information, but is unable to carry
out and optimize complex queries as it relies on user selection and
does not consider multiple replicas of the same data. Furthermore,
the inherent performance bottleneck imposed by the directory-tree
structure in conventional file system design can become unaccept-
ably severe in an Exabyte-scale system. Thus, we propose to lever-
age semantic correlation of file metadata, which exploits higher-
dimensional static and dynamic attributes, or higher-dimensional
localities than the simple temporal or spatial locality utilized in ex-
isting approaches.

Semantic correlation [10] comes from the exploitation of high-
dimensional attributes of metadata. To put things in perspective,
linear brute-force approach uses 0-dimensional correlation while
spatial/temporal locality approaches, such as Nexus [11] and Spy-
glass [8], use 1-dimensional correlation, which can be considered
as special cases of our proposed approach that considers higher di-
mensional correlation. The main benefit of using semantic corre-
lation is the ability to significantly narrow the search space and
improve system performance.

1.1 Semantic Correlation
Semantic correlation extends conventional temporal and spatial

locality and can be defined within a multi-dimensional attribute
space as a quantitative measure. Assuming that a groupGi(1 ≤
i ≤ t) from t ≥ 1 groups contains a filefj , semantic correlation
can be measured by the minimum of

∑t

i=1

∑
fj∈Gi

(fj − Ci)
2

whereCi is the centroid of groupGi, i.e., the average values of
D-dimensional attributes. The value of(fj − Ci)

2 represents the
Euclidean distance in theD-dimensional attribute space. Since the
computational costs for all attributes are unacceptably high in prac-
tice, we use a simple but effective semantic tool, i.e., Latent Se-
mantic Indexing (LSI) [12, 13] to generate semantically correlated
groups as shown in Section 3.

The notion of semantic correlation has been used in many sys-
tems designs, optimizations and real-world applications. In what
follows we list some examples from recent studies by other re-
searchers and by our group, as well as our preliminary experimental
results, to evidence the strong presence and effective use of seman-
tic correlation of file metadata.

The semantic correlation widely existing in real systems has been
observed and studied by a sizeable body of published work. Spy-
glass [8] reports that the locality ratios are below 1% in many given
traces, meaning that correlated files are contained in less than 1%
of the directory space. Filecules [14] reveals the existence of file
grouping by examining a large set of real traces where 45% requests
from all 11,568,086 requests visit only 6.5% files from all 65,536
files that are sorted by file popularity. Measurement of large-scale
network file system workloads [15] further verifies that fewer than
1% clients issue 50% file requests and over 60% re-open operations
take place within one minute.

Semantic correlation can be exploited to optimize system perfor-

mance. Our research group has proposed metadata prefetching al-
gorithms, Nexus [11] and FARMER [16], in which both file access
sequences and semantic attributes are considered in the evaluation
of the correlation among files to improve file metadata prefetching
performance. The probability of inter-file access is found to be up
to 80% when considering four typical file system traces. Our pre-
liminary results based on these and theHP [17], MSN [18], and
EECS[19] traces further show that exploiting semantic correlation
of multi-dimensional attributes can help prune up to 99.9% search
space [20].

Therefore, in this paper we proposed a novel decentralized semantic-
aware metadata organization, calledSmartStore[21], to effectively
exploit semantic correlation to enable efficient complex queries for
users and to improve system performance in real-world applica-
tions. Examples of the SmartStore applications include the follow-
ing.

From a user’s viewpoint, range queries can help answer ques-
tions like “Which experiments did I run yesterday that took less
than 30 minutes and generated files larger than 2.6GB?"; whereas
top-k queries may answer questions like “I can not accurately re-
member a previously created file but I know that its file size is
around 300MB and it was last visited around Jan.1, 2008. Can
the system show 10 files that are closest to this description?".

From a system’s point of view, SmartStore may help optimize
storage system designs such as de-duplication, caching and prefetch-
ing. Data de-duplication [22,23] aims to effectively and efficiently
remove redundant data and compress data into a highly compact
form for the purpose of data backup and archiving. One of the key
problems is how to identify multiple copies of the same contents
while avoiding linear brute-force search within the entire file sys-
tem. SmartStore can help identify the duplicate copies that often
exhibit similar or approximate multi-dimensional attributes, such
as file size and created time. SmartStore exploits the semantic cor-
relations existing in the multi-dimensional attributes of file meta-
data and efficiently organizes them into the same or adjacent groups
where duplicate copies can be placed together with high probability
to narrow the search space and further facilitate fast identification.

On the other hand, caching [24] and prefetching [25] are widely
used in storage systems to improve I/O performance by exploiting
spatial or temporal access locality. However, their performance in
terms of hit rate varies largely from application to application and
heavily depends on the analysis of access history. SmartStore can
help quickly identify correlated files that may be visited in the near
future and can be prefetched in advance to improve hit rate. Taking
top-k query as an example, when a file is visited, we can execute a
top-k query to find itsk most correlated files to be prefetched. In
SmartStore, both top-k and range queries can be completed within
zero or a minimal number of hops since correlated files are aggre-
gated within the same or adjacent groups to improve cache accu-
racy as shown in Section 5.3.

1.2 SmartStore’s Contributions
This paper makes the following key contributions.

• Decentralized semantic-aware organization scheme of file
system metadata: SmartStore is designed to support com-
plex query services and improve system performance by ju-
diciously exploiting semantic correlation of file metadata and
effectively utilizing semantic analysis tools, i.e., Latent Se-
mantic Indexing (LSI) [13]. The new design is different
from the conventional hierarchical architecture of file sys-
tems based on a directory-tree data structure in that it re-
moves the latter’s inherent performance bottleneck and thus
can avoid its disadvantages in terms of file organization and

query efficiency. Additionally and importantly, SmartStore is
able to provide the existing services of conventional file sys-
tems while supporting new complex query services with high
reliability and scalability. Our experimental results based on
a SmartStore prototype implementation show that its com-
plex query performance is more than one thousand times
higher and its space overhead is20 times smaller than current
database methods with a very small false probability.

• Multi-query services: To the best of our knowledge, this
is the first study to design and implement a storage archi-
tecture to support complex queries, such as range and top-k
queries, within the context of ultra-large-scale distributed file
systems. More specifically, our SmartStore can support three
query interfaces for point, range and top-k queries. Con-
ventional query schemes in small-scale file systems are of-
ten concerned with filename-based queries that will soon be
rendered inefficient and ineffective in next-generation large-
scale distributed file systems. The complex queries will serve
as an important portal or browser, like the web or web browser
for Internet and city map for a tourist, for query services in
an ocean of files. Our study is a first attempt at providing
support for complex queries directly at the file system level.

The rest of the paper is organized as follows. Section 2 describes
the SmartStore system design. Section 3 presents details of de-
sign and implementation. Section 4 discusses some key issues.
Section 5 presents the extensive experimental results. Sections 6
presents related work. Section 7 concludes the paper.

2. SMARTSTORE SYSTEM
The basic idea behind SmartStore is that files are grouped and

stored according to their metadata semantics, instead of directory
namespace, as shown in Figure 1 that compares the two schemes.

D1

D11 D12 D13

D111 D112 D121 D122 D123 D131 D132

Conventional directory tree Semantic R-tree

index units

storage units

Mapping

Grouping

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

I2I1 I3

I4

S1 S2 S3 S4S5 S6S7 S8 S9S10 S11 S12

Figure 1: Comparisons with conventional file system.

This is motivated by the observation that metadata semantics can
guide the aggregation of highly correlated files into groups that in
turn have higher probability of satisfying complex query requests,
judiciously matching the access pattern of locality. Thus, query and
other relevant operations can be completed within one or a small
number of such groups, where one group may include several stor-
age nodes, other than linearly searching via brute-force on almost
all storage nodes in a directory namespace approach. On the other
hand, the semantic grouping can also improve system scalability
and avoid access bottlenecks and single-point failures since it ren-
ders the metadata organization fully decentralized whereby most
operations, such as insertion/deletion and queries, can be executed
within a given group.

We further present the overview of the proposed SmartStore sys-
tem and its main components respectively from user and system
views with automatic configuration to match query patterns.

2.1 Overview
A semantic R-tree as shown on the right of Figure 1 is evolved

from classical R-tree [26] and consists of index units (i.e., non-leaf
nodes) containing location and mapping information and storage
units (i.e., leaf nodes) containing file metadata, both of which are
hosted on a collection of storage servers. One or more R-trees may
be used to represent the same set of metadata to match query pat-
terns effectively. SmartStore supports complex queries, including
range and top-k queries, in addition to simple point query. Figure 2
shows a logical diagram of SmartStore that provides multi-query
services for users while organizes metadata to enhance system per-
formance by using decentralized semantic R-tree structures.

SmartStore

Semantic

Grouping

Insertion

Deletion

Range Query

Top-K NN

Query

Key Operations

 Index Units

Light-weight Distributed Computing for Semantic

R-tree

Point Query

Storage Units Reliable Mapping
Latent Semantic

Indexing

Figure 2: SmartStore system diagram.

SmartStore has three key functional components: 1) the group-
ing component that classifies metadata into storage and index units
based on the LSI semantic analysis; 2) the construction compo-
nent that iteratively builds semantic R-trees in a distributed envi-
ronment; 3) the service component that supports insertion, deletion
in R-trees and multi-query services. Details of these and other com-
ponents of SmartStore are given in Section 3.

2.2 User View
A query in SmartStore works as follows. Initially, a user sends

a query randomly to a storage unit, i.e., a leaf node of semantic R-
tree. The chosen storage unit, calledhomeunit for this request,
then retrieves semantic R-tree nodes by using either an on-line
multicast-based approach or an off-line pre-computation-based ap-
proach to locating the corresponding R-tree node. Specifically, for
a point query, the home unit checks Bloom filters [27] stored lo-
cally in a way similar to the group-based hierarchical Bloom-filter
array approach [28] and, for a complex query, the home unit checks
the Minimum Bounding Rectangles (MBR) [26] to determine the
membership of queried file within checked servers. An MBR rep-
resents the minimal approximation of the enclosed data set by us-
ing multi-dimensional intervals of the attribute space, showing the
lower and the upper bounds of each dimension. After obtaining
query results, the home unit returns them to the user.

2.3 System View
The most critical component in SmartStore is semantic grouping,

which efficiently exploits metadata semantics, such as file phys-
ical and behavioral attributes, to classify files into groups itera-
tively. These attributes exhibit different characteristics. For ex-
ample, attributes such as access frequency, file size, volume of
“read" and “write" operations are changed frequently, while some
other attributes, such as filename and creation time, often remain
unchanged. SmartStore identifies the correlations between differ-

ent files by examining these and other attributes, and then places
strongly correlated files into groups. All groups are then organized
into a semantic R-tree. These groups may reside in multiple meta-
data servers. By grouping correlated metadata, SmartStore exploits
their affinity to boost the performance of both point query and com-
plex queries.

Figure 3 shows the basic steps in constructing a semantic R-tree.
Each metadata server is a leaf node in our semantic R-tree and can
also potentially hold multiple non-leaf nodes of the R-tree. In the
rest of the paper, we refer to the semantic R-tree leaf nodes asstor-
age unitsand the non-leaf nodes asindex units.

Addresses of all child nodes

MBR representation for

local metadata

MBRs

Address of father node

(Index Unit)

Storage Unit Index Unit

Address of father node

 (Index Unit)

Semantically correlated

metadata

Figure 3: Storage and index units.

2.4 Automatic Configuration to Match Query
Patterns

The objective of the semantic R-tree constructed by examining
the semantic correlation of metadata attributes is to match the pat-
terns of complex queries from users. Unfortunately, in real-world
applications, the queried attributes will likely exhibit an unpre-
dictable characteristics, meaning that a query request may probe
an arbitraryd-dimensional(1 ≤ d ≤ D) subset ofD-dimensional
metadata attributes. For example, we can construct a semantic R-
tree by leveraging three attributes, i.e.,file size, creation time and
last modification time, and then queries may search files according
to their (file size), (file size & creation time), or other combina-
tions of these three attributes. Although using a single semantic
R-tree can eventually lead to the queried files, the system perfor-
mance can be greatly reduced as a result of more frequently invok-
ing the brute-force-like approach after each failed R-tree search.
The main reason is that a single semantic R-tree representing three
attributes may not work efficiently if queries are generated in an
unpredictable way.

In order to efficiently support complex queries with unpredictable
attributes, we develop anautomatic configurationtechnique to adap-
tively construct one or more semantic R-trees to improve query
accuracy and efficiency. More R-trees with each being associ-
ated with a different combination of multi-dimensional attributes
provide much better query performance, but require more storage
space. The automatic configuration technique thus must optimize
the tradeoff between storage space and query performance. Our
basic idea is to configure one or more semantic R-trees to adap-
tively satisfy complex queries associated with an arbitrary subset
of attributes.

Assume thatD is the maximum number of attributes in a given
file system. The automatic configuration first constructs a semantic
R-tree according to the availableD-dimensional attributes to group
file metadata, and counts the number of index units,NO(ID), gen-
erated in this R-tree. It then constructs another semantic R-tree us-
ing a subset (i.e.,d attributes) and records the number of generated
index units,NO(Id). When the difference in the number of index

units between the two semantic R-trees,|NO(ID) − NO(Id)|, is
larger than some pre-determined threshold, we conjecture that these
two semantic R-trees are sufficiently different, and thus are saved
to serve future queries. Otherwise, the R-tree constructed fromd

attributes will be deleted. We repeat the above operations on all
subsets of available attributes to configure one or more semantic R-
trees to accurately cover future query patterns. For a future query,
SmartStore will obtain query results from the semantic R-tree that
has the same or similar attributes. Although the cost of automatic
configuration seems to be relatively high, we use the number of
index units as an indicator to constrain the costs. Some subsets
of available attributes may produce the same or approximate (by
checking their difference) semantic R-trees and redundant R-trees
can be deleted. In addition, the configuration operation occurs rel-
atively infrequently on the entire file system.

These multiple R-trees covering different common subsets of all
attributes will thus be able to serve the vast majority of queries. For
the unlikely queries with attributes beyond these common subsets,
the semantic R-tree constructed fromD-dimensional attributes will
be used to produce a superset of the queried results. The penalty
is to further refine these results by either brute-force pruning or
utilizing extra attributes that, however, are generally unknown in
advance.

3. DESIGN AND IMPLEMENTATION
In this section, we present the design and implementation of

SmartStore, including semantic grouping, system reconfigurations
such as node insertion and deletion, and point and complex queries.

3.1 Semantic Grouping

3.1.1 Statement and Tool

STATEMENT 1 (SEMANTIC GROUPING OF M ETADATA). Given
file metadata withD attributes, find a subset ofd attributes(1 ≤
d ≤ D), representing special interests, and use the correlation
measured in this subset to partition similar file metadata into mul-
tiple groups so that:

• A file in a group has a higher correlation with other files in
this group than with any file outside of the group;

• Group sizes are approximately equal.

Semantic grouping is an iterative process. In the first iteration,
we compute the correlation between files and cluster all files whose
correlations are larger than a predetermined admission constantε1

(0 ≤ ε1 ≤ 1) into groups. All groups generated in the first iter-
ation are used as leaf nodes to construct a semantic R-tree. The
composition of the selectedd-dimensional attributes produces a
grouping predicate, which serves as grouping criteria. The
semantic grouping process can be recursively executed by aggre-
gating groups in the(i − 1)th-level into theith-level nodes of the
semantic R-tree with the correlation valueεi(0 ≤ εi ≤ 1, 1 ≤ i ≤
H), until reaching the root, whereH is the depth of the constructed
R-tree.

More than one predicate may be used to construct semantic groups.
Thus, multiple semantic R-trees can be obtained and maintained
concurrently in a distributed manner in a large-scale distributed
file system where most files are of interests to arguably only one
or a small number of applications or application environments. In
other words, each of these semantic R-trees may possibly represent
a different application environment or scenario. Our objective is to
identify a set of predicates that optimize the query performance.

File metadata withD attributes can be represented as a D-dimensional
semantic vectorSa = [S1, S2, · · · , SD]. Similarly, a point query
can also be abstracted asSq = [S1, S2, · · · , Sd] (1 ≤ d ≤ D). In
the semantic R-tree, each node represents all metadata that can be
accessed through its children nodes. Each node can be summarized
by a geometric centroid of all metadata it represents. The attributes
used to form semantic vectors can be either physical ones, such as
creation time and file size, or behavioral ones, such as process ID
and access sequence. Our previous work [16] shows that combin-
ing physical and behavioral attributes improves the identification
of file correlations to help improve cache hit rate and prefetching
accuracy.

We propose to use Latent Semantic Indexing (LSI) [12, 13] as
a tool to measure semantic correlation. LSI is a technique based
on the Singular Value Decomposition (SVD) [29] to measure se-
mantic correlation. SVD reduces a high-dimensional vector into a
low-dimensional one by projecting the large vector into a semantic
subspace. Specifically, SVD decomposes an attribute-file matrix
A, whose rank isr, into the product of three matrices, i.e.,A =
UΣV T , whereU = (u1, . . . , ur) ∈ Rt×r andV = (v1, . . . , vr) ∈
Rd×r are orthogonal,Σ = diag(σ1, . . . , σr) ∈ Rr×r is diagonal,
andσi is thei-th singular value ofA. V T is the transpose of ma-
trix V . LSI utilizes an approximate solution by representingA

with a rank-p matrix to delete all butp largest singular values, i.e.,
Ap = UpΣpV T

p .
A metadata query for attributei can also be represented as a se-

mantic vector of sizep, i.e., thei-th row of Up ∈ Rt×p. In this
way, LSI projects a query vectorq ∈ Rt×1 onto thep-dimensional
semantic space in the form of̂q = UT

p q or q̂ = Σ−1
p UT

p q. The
inverse of the singular values is used to scale the vector. The simi-
larity between semantic vectors is measured as their inner product.
Due to space limitation, this paper only gives basic introduction to
LSI and more details can be found in [12,13].

While there are other tools available for grouping, such asK-
means [30], we choose LSI because of its high efficiency and easy
implementation. TheK-means [30] algorithm exploits multi-dimensional
attributes ofn items to cluster them intoK(K ≤ n) partitions.
While the process of iterative refinement can minimize the total
intra-cluster variance that is assumed to approximately measure the
cluster, the final results’ heavy dependence on the distribution of
the initial set of clusters and the input parameterK may potentially
lead to poor quality of the results.

The semantic grouping approach is scalable to support aggre-
gation operations on multiple types of inputs, such asunit vector
andfile vector. Although the following sections mainly show how
to insert/delete units and aggregate correlated units into groups, the
approach is also applicable to aggregating files based on their multi-
dimensional attributes that construct file vectors.

3.1.2 Basic Grouping
We first use LSI to determine semantic correlation of file meta-

data and group them accordingly. Next we present how to formu-
late and organize the groups into a semantic R-tree.

First, we calculate the correlations among these servers, each
of which is represented as a leaf node (i.e., storage unit). GivenN

metadata nodes storingD-dimensional metadata, a semantic vector
with d attributes(1 ≤ d ≤ D) is constructed by using LSI to
represent each of theN metadata nodes. Then using the semantic
vectors of theseN nodes as input to the LSI tool, we obtain the
semantic correlation value between any two nodes,x andy, among
theseN nodes.

Next, we build parent nodes, i.e., the first-level non-leaf node
(index unit), in the semantic R-tree. Nodesx andy are aggregated

into a new group if their correlation value is larger than a predefined
admission thresholdε1. When a node has correlation values larger
thanε1 with more than one node, the one with the largest correla-
tion value will be chosen. These groups are recursively aggregated
until all of them form a single one, the root of R-tree. In the se-
mantic R-tree, each tree node uses Minimum Bounding Rectangles
(MBR) to represent all metadata that can be accessed through its
children nodes.

The above procedures aggregate all metadata into a semantic R-
tree. For complex queries, the query traffic is very likely bounded
within one or a small number of tree nodes due to metadata se-
mantic correlations and similarities. If each tree node is stored on
a single metadata server, such query traffic is then bounded within
one or a small number of metadata servers. Therefore, the proposed
SmartStore can effectively avoid or minimize brute-force searches
that must be used in conventional directory-based file systems for
point and complex queries.

3.2 System Reconfigurations

3.2.1 Insertion
When a storage unit is inserted into a semantic group of stor-

age units, the semantic R-tree is adaptively adjusted to balance the
workload among all storage units within this group. An insertion
operation involves two steps: group location and threshold adjust-
ment. Both steps only access a small fraction of the semantic R-tree
in order to avoid message flooding in the entire system.

When inserting a storage unit as a leaf node of the semantic R-
tree, we need to first identify a group that is the most closely related
to this unit. Semantic correlation value between this new node and
a randomly chosen group is computed by using LSI analysis over
their semantic vectors. If the value is larger than certain admis-
sion threshold, the group accepts the storage unit as a new member.
Otherwise, the new unit will be forwarded to adjacent groups for
admission checking. After a storage unit is inserted into a group,
the MBR will be updated to cover the new unit.

The admission threshold is one of the key design parameter to
balance load among multiple storage units within a group. It di-
rectly determines the semantic correlation, membership, and size
of a semantic group. The initial value of this threshold is deter-
mined by a sampling analysis. After inserting a new storage unit
into a semantic group, the threshold is dynamically adjusted to keep
the semantic R-tree balanced.

3.2.2 Deletion
The deletion operation in the semantic R-tree is similar to a dele-

tion in a conventional R-tree [26]. Deleting a given node entails ad-
justing the semantic correlation of that group, including the value of
group vector and the multi-dimensional MBR of each group node.
If a group contains too few storage units, the remaining units of this
group are merged into its sibling group. When a group becomes a
child node of its former grandparent in the semantic R-tree as a re-
sult of becoming the only child of its father due to group merging,
its height adjustment is propagated upwardly .

3.3 On-line Query Approach
We first present on-line approaches to satisfying range, top-k and

point query requests and then accelerate query operations by pre-
processing.

3.3.1 Range Query
A range query is to find files satisfying multi-dimensional range

constraints. A range query can be easily supported in the semantic

R-tree that contains an MBR on each tree node with a time com-
plexity of O(log N) for N storage units. A range query request can
be initially sent to any storage unit that then multicasts query mes-
sages to its father and sibling nodes in a semantic R-tree to identify
correlated target nodes that contain results with high probability.

3.3.2 Top-K Query
A top-k query aims to identifyk files with attribute values that

are closest to the desired query pointq. The main operations are
similar to those of a range query. After a storage unit receives a
query request, it first checks its father node, i.e., an index node, to
identify a target node in the semantic R-tree that is most closely
associated with the query pointq. After checking the target node,
we obtain aMaxD that is used to measure the maximum distance
between the query pointq and all obtained results.MaxD also
serves as a threshold to improve the query results. Its value is up-
dated if a better result is obtained. By multicasting query messages,
the sibling nodes of the target node are further checked to verify
whether the currentMaxD represents the smallest distance to the
query point. This is to determine whether there are still better re-
sults. The top-k query results are returned when the parent node of
the target node cannot find files with smaller distance thanMaxD.

3.3.3 Point Query
Filename-based indexing is very popular in existing file systems

and will likely remain popular in future file systems. A point query
for filenames is to find some specific file, if it exists, among storage
units. A simple but bandwidth-inefficient solution is to send the
query request to a sequence of storage units to ascertain the exis-
tence and location of the queried file following the semantic R-tree
directly. This method suffers from long delays and high bandwidth
overheads.

In SmartStore, we deployed a different approach to supporting
point query. Specifically, Bloom filters [27], which are space-efficient
data structures for membership queries, are embedded into storage
and index units to support fast filename-based query services. A
Bloom filter is built for each leaf node to represent the filenames of
all files whose metadata are stored locally. The Bloom filter of an
index unit is obtained by the logical union operations of the Bloom
filters of its child nodes, as shown in Figure 4. A filename-based
query will be routed along the path on which the corresponding
Bloom filters report positive hits, thus significantly reducing the
search space.

A possible drawback of the above multi-query operations is that
they may suffer from potentially heavy message traffic necessary to
locate the most correlated nodes that contain queried files with high
probabilities, since a query request is randomly directed to a storage
unit that may not be correlated with the request. This drawback can
be overcome by the following proposed off-line pre-processing.

3.4 Query Acceleration by Pre-processing
To further accelerate queries, we utilize a duplication approach

to performing off-line pre-processing. Specifically, each storage
unit locally maintains a replica of the semantic vectors of all index
units to speed up the queries. Our motivation is to strike a trade-
off between accuracy and maintenance costs, as shown in Figure 5.
We deploy the replicas of first-level index units, e.g.,D, E, I , in
storage units to obtain a good tradeoff, which is verified by our
experiments presented in Section 5.5. After formulating each ar-
rival request into a request vector based on its multi-dimensional
attributes, we use the LSI tool over the request vector and semantic
vectors of existing index units to check which index unit is the most
closely correlated with the request. In this way we can discover the

Storage units

Index units

Root

A B C

D E

F G

H

I

Filename summary

J K

D=A union B union C

E= J union K

D

E

F= D union E

F

Figure 4: Bloom filters used for filename-based query.

Request

arriving

Storage units

Index units

Root

(1) Group Location

using LSI

(2) forward

request (3) local search

(4) if fail, continue

to forwardMatching?

Query : Forward

A B C

D E

F G

H

I

Matching?

Query : Forward

Matching?

Query : Forward

Off-line pre-processing

On-line query

Figure 5: On-line and off-line queries.

target index unit that has the highest probability of successfully
serving the request. The request is then forwarded directly to the
target index unit, in which a local search is performed.

Off-line pre-processing utilizes lazy updating to deal with infor-
mation staleness occurring among storage units that store the repli-
cas of the first-level index units. When inserting or deleting files
in a storage unit, its associated first-level index unit executes local
update to maintain up-to-date information of storage units that it
covers. When the number of changes is larger than some threshold,
the index unit multicasts its latest replicas to other storage units.

4. KEY DESIGN ISSUES
This section discusses key design issues in SmartStore, includ-

ing node split/merge, unit mapping and attribute updating based on
versioning.

4.1 Node Split and Merge
The operations of splitting and merging nodes in semantic R-tree

follow the classical algorithms in R-tree [26]. A node will be split
when the number of child nodes of a parent node is larger than a
predetermined thresholdM . On the other hand, a node is merged
with its adjacent neighbor when the number of child nodes of a
parent node is smaller than another predetermined thresholdm. In
our design, the parameterm andM can be defined asm ≤ M

2
and

m can be tuned depending on the workload.

4.2 Mapping of Index Units
Since index units are stored in storage units, it is necessary and

important to map the former to the latter in a way that balances
the load among storage units while enhancing system reliability.
Our mapping is based on a simple bottom-up approach that itera-
tively applies random selection and labeling operations, as shown

in Figure 6 with an example of the process that maps index units
to storage units. An index unit in the first level can be first ran-
domly mapped to one of its child nodes in the R-tree (i.e., a storage
unit from the covered semantic group). Each storage unit that has
been mapped by an index node is labeled to avoid being mapped by
another index node. After all the first-level index units have been
mapped to storage units, the same mapping process is applied to
the second-level index units that are mapped to the remaining stor-
age units. This mapping process repeats iteratively until the root
node of the semantic R-tree is mapped. In practice, the number of
storage units is generally much larger than that of index units, as
evidenced by experiments in Section 5.5, and thus each index unit
can be mapped to a different storage unit.

Index units

Storage units

Mapping

Grouping

The first-level

index units

The second-level index unit

Figure 6: Mapping operations for index units.

Our semantic grouping scheme aggregates correlated metadata
into semantic-aware groups that can satisfy query requests with
high probability. The experimental results in Section 5 show that
most of requests can obtain query results by visiting one or a very
small number of groups. The root node hence will not likely be-
come a performance bottleneck.

4.3 Multi-mapping of The Root Node
The potential single point of failure posed by the root node can

be a serious threat to system reliability. Thus, we utilize a multi-
mapping approach to enhancing system reliability through redun-
dancy, by allowing the root node to be mapped to multiple storage
units. In this multi-mapping of the root node, the root is mapped
to a storage unit in each group of the storage units that cover a dif-
ferent subtree of the semantic R-tree, so that the root can be found
within each of the subtrees.

Since each parent node in the semantic R-tree maintains an MBR
to cover all child nodes while the root keeps the attribute bounds of
files of the entire system (or application environment), a change on
a file or metadata will not necessarily lead to an update on the root
node representation, unless it results in a new attribute value that
falls outside of any attribute bound maintained by the root. Thus,
most changes to metadata in a storage unit will not likely lead to
an update on the root node, which significantly reduces the cost
of maintaining consistency among the multiple replicas of the root
node that needs to multicast changes to the replicas in other nodes.

Mapping the root node to all semantic groups at a certain level of
the semantic R-tree facilitates fast query services and improves sys-
tem reliability. It can help speed up the query services by quickly
answering query requests for non-existing files through checking
the root to determine if the query range falls outside of the root
range.

4.4 Consistency Guarantee via Versioning
SmartStore uses a multi-replica technique to support parallel and

distributed indexing, which can potentially lead to information stal-
eness and inconsistency between the original and replicated infor-

mation for lack of immediately updating. SmartStore provides con-
sistency guarantee among multiple replicas by utilizing a version-
ing technique that can efficiently aggregate incremental index up-
dates. A newly created version attached to its correlated replica
temporarily contains aggregated real-time changes that have not
been directly updated in the original replicas. This method elim-
inates many small, random and frequent visits to the index and has
been widely used in most versioning file systems [8,9,31].

In order to maintain semantic correlation and locality, Smart-
Store creates versions for every group, represented as the first-level
index unit that has been replicated to other index units. At timet0,
SmartStore sends the replicas of the original index units to others
and fromti−1 to ti, updates are aggregated into theti-th version
that is attached to its correlated index unit. These updates include
insertion, deletion and modification of file metadata, which are ap-
propriately labeled in the versions. In order to adapt to the system
changes, SmartStore allows the groups to have different numbers
and sizes of attached versions.

Versioning may introduce extra overhead due to the need to check
on the attached versions in addition to the original information
when executing a query. However, since the versions only main-
tain changes that require small storage overheads and can be fully
stored in memory, the extra latency of searching is usually small. In
practice, we propose to roll the version changes backwards, rather
than forwards as in Spyglass [8], and a query first checks the origi-
nal information and then its versions fromti to t0. The direct ben-
efit of checking backwards is to timely obtain most recent changes
since versionti usually contains newer information than version
ti−1.

SmartStore removes attached versions when reconfiguring index
units. The frequency of reconfiguration depends on the user re-
quirements and environment constraints. Removing versions en-
tails two operations. We first apply the changes of a version into
its attached original index unit that will be updated according to
these changes in the attached versions, such as inserting, deleting
or modifying file metadata. On the other hand, the version is also
multicast to other remote index units that have stored the replica
of original index unit, and then these remote index units carry out
the similar operations for local updating. Since the attached ver-
sions only need to maintain changes of file metadata and maintain
small size, SmartStore may multicast them as replicas to other re-
mote servers to guarantee information consistency while requiring
not too much bandwidth to transmit small-size changes as shown
in Section 5.6.

5. PERFORMANCE EVALUATION
This section evaluates SmartStore through its prototype by us-

ing representative large file system-level traces, includingHP [17],
MSN [18], andEECS[19]. We compare SmartStore against two
baseline systems that use database techniques. The evaluation met-
rics considered are query accuracy, query latency and communi-
cation overhead. Due to space limitation, additional performance
evaluation results are omitted but can be found in our technical re-
port [20] and work-in-progress report [21].

5.1 Prototype Implementation
The SmartStore prototype is implemented in Linux and our ex-

periments are conducted on a cluster of 60 storage units. Each stor-
age unit has an Intel Core 2 Duo CPU, 2GB memory, and high-
speed network connections. We carry out the experiments for 30
runs each to validate the results according to the evaluation guide-
lines of file and storage systems [5]. The used attributes display ac-
cess locality and skewed distribution especially for multi-dimensional

Table 1: Scaled-up HP .
Original TIF=80

request(million) 94.7 7576
active users 32 2560

user accounts 207 16560
active files(million) 0.969 77.52
total files (million) 4 320

Table 2: Scaled-up MSN .
Original TIF=100

of files(million) 1.25 125
total READ (million) 3.30 330

total WRITE (million) 1.17 117
duration (hours) 6 600

total I/O (million) 4.47 447

Table 3: Scaled-up EECS .
Original TIF=150

total READ (million) 0.46 69
READ size(GB) 5.1 765

total WRITE (million) 0.667 100.05
WRITE size (GB) 9.1 1365

total operations (million) 4.44 666

attributes.
In order to emulate the I/O behaviors of the next-generation stor-

age systems for which no realistic traces exist, we scaled up the
existing I/O traces of current storage systems both spatially and
temporally. Specifically, a trace is decomposed into sub-traces. We
add a unique sub-trace ID to all files to intentionally increase the
working set. The start time of all sub-traces is set to zero so that
they are replayed concurrently. The chronological order among all
requests within a sub-trace is faithfully preserved. The combined
trace contains the same histogram of file system calls as the original
one but presents a heavier workload (higher intensity). The number
of sub-traces replayed concurrently is denoted as theTrace Intensi-
fying Factor(TIF) as shown in Table 1, 2 and 3. Similar workload
scale-up approaches have also been used in other studies [28,32].

We compare SmartStore with two baseline systems. The first
one is a popular database approach that uses aB+ tree [33] to in-
dex each metadata attribute, denoted as DBMS that here does not
take into account database optimization. The second one is a sim-
ple, non-semantic R-tree-based database approach that organizes
each file based on its multi-dimensional attributes without lever-
aging metadata semantics, denoted as R-tree. On the other hand,
each Bloom filter embedded within an R-tree node for point query
is assigned 1024 bits withk = 7 hash functions to fit memory con-
straints. We select MD5 [34] as the hash function for its relatively
fast implementation. The value of an attribute is hashed into 128
bits by calculating its MD5 signature, which is then divided into
four 32-bit values. We set the thresholds of 10% and 5%, respec-
tively for the automatic configuration described in Section 2.4 and
lazy updating of off-line pre-processing of Section 3.4.

While filename-based point query is very popular in most file
system workloads, no file system I/O traces representing requests
for complex queries are publically available. In this paper, we use a
synthetic approach to generating complex queries within the multi-
dimensional attribute space. The key idea of synthesizing com-
plex quires is to statistically generate random queries in a multi-
dimensional space. The file static attributes and behavioral attributes
are derived from the available I/O traces. More specifically, a range
query is formed by points along multiple attribute dimensions and
a top-k query must specify the multi-dimensional coordinate of a
given point and thek value. For example, a range query aiming
to find all the files that were revised between time 10:00 to 16:20,
with the amount of “read" data ranging from 30MB to 50MB, and
the amount of “write" data ranging from 5MB to 8MB, can be
represented by two points in a 3-dimensional attribute space, i.e.,
(10:00, 30, 5) and (16:20, 50, 8). Similarly, a top-k query in the
form of (11:20, 26.8, 65.7, 6) represents a search for the top-6
files that are closest to the description of a file that is last revised
at time11:20, with the amounts of “read" and “write" data being
approximately 26.8MB and 65.7MB, respectively. Therefore, it
is reasonable and justifiable for us to utilize random numbers as
the coordinates of queried points that are assumed to follow either
the Uniform, Gauss, or Zipf distribution to comprehensively eval-
uate the complex query performance. Due to space limitation, we
mainly present the results of the Zipf distribution.

5.2 Performance Comparisons between Smart-
Store and Baseline Systems

We compare the query latency between SmartStore and the two
baseline systems described earlier in Section 5.1, labeled DBMS
and R-tree respectively. Table 4 shows the latency comparisons of
point, range and top-k queries using theMSNandEECStraces. It is
clear that SmartStore not only significantly outperforms but is also
much more scalable than the two database-based schemes. The
reason behind this is that the former’s semantic grouping is able
to significantly narrow the search scope, while DBMS must check
eachB+-tree index for each attribute, resulting in linear brute-force
search costs. Although the non-semantic R-tree approach improves
over DBMS in query performance by using a multi-dimensional
structure to allow parallel indexing on all attributes, its query la-
tency is still much higher than SmartStore as it completely ignores
semantic correlations.

Table 4: Query latency (in second) comparisons of SmartStore,
R-tree and DBMS usingMSN and EECS traces.

MSNTrace EECSTraceQuery Types TIF
DBMS R-tree SmartStoreDBMS R-treeSmartStore

120 146.7 32.6 0.108 26.4 8.6 0.074Point Query
160 378.6 122.5 0.179 168.9 42.1 0.136
120 1516.5 242.5 1.63 685.2 126.3 1.56Range Query
160 3529.6 625.7 3.41 1859.1 293.1 2.87
120 4651.8 492.5 2.48 2076.1 196.8 2.25Top-k Query
160 11524.61528.4 4.02 6519.3 571.7 3.47

We also examined the space overhead per node when using Smart-
Store, R-tree and DBMS, as shown in Figure 7. SmartStore con-
sumes much less space than the R-tree and DBMS approaches, due
to its decentralized scheme and multi-dimensional representation.
SmartStore stores the index structure, i.e., semantic R-tree, across
multiple nodes, while R-tree is a centralized structure. Addition-
ally, SmartStore utilizes the multi-dimensional attribute structure,
i.e., semantic R-tree, while DBMS builds aB+-tree for each at-
tribute. As a result, DBMS has a large storage overhead. Since
SmartStore has a small space overhead and can be stored in mem-
ory on most servers, it allows the query to be served at the speed of
memory access.

5.3 Grouping Efficiency
The grouping efficiency determines how effectively SmartStore

can bound a query within a small set of semantic groups to improve
the overall system scalability. Figure 8 shows that most operations,
between 87.3% and 90.6%, can be served by one group, i.e., a 0-
hop routing distance. This confirms the effectiveness of our seman-
tic grouping. In addition, since the semantic vector of one group,
i.e., the first-level index unit in the semantic R-tree, can accurately
represent the aggregated metadata, these vectors are replicated to
other storage units in order to perform fast and accurate queries lo-
cally as mentioned in Section 3.4. The observed results prove the
feasibility of the off-line pre-processing scheme, which can quickly
direct a query request to the most correlated index units.

Trace

S
p

ac
e

O
ve

rh
ea

d
s

(G
B

)

HP MSN EECS
0

20

40

60

80

100

120

140

3.5 1.6 1.8

27

9 11

126

32

48

SmartStore
R-tree
DBMS

Figure 7: Space overheads of SmartStore, R-tree and DBMS.

Number of Hops

P
er

ce
nt

ag
e

(%
)

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

HP
MSN
EECS

Figure 8: The number of hops of routing distance.

5.4 Query Accuracy
We evaluate the accuracy of complex queries by using the “Re-

call" measure and of point query by the false probability of Bloom
filters.

5.4.1 Point Query
SmartStore can support point query, i.e., filename-based index-

ing, through multiple Bloom filters stored in index units as de-
scribed in Section 3.3.3. Although Bloom filter-based search may
lead to false positives and false negatives due to hash collisions and
information staleness, the false probability is generally very small.
In addition, these false positives and false negatives are identified
when the target metadata is accessed. Figure 9 shows the hit rate
for point query. It is observed that over 88.2% query requests can
be served accurately by Bloom filters.

������������
�������

���� ���� ���� 	��� ����
Number of Queries

H
it

R
at

e
(%

)

� �
� ���

Figure 9: Average hit rate for point query.

5.4.2 Complex Queries
We adopt “Recall" as a measure for complex query quality from

the field of information retrieval [35]. Given a queryq, we de-
noteT (q) the ideal set ofK nearest objects andA(q) the actual
neighbors reported by SmartStore. We definerecall asrecall =
|T (q)∩A(q)|

T (q)
.

Number of Queries

R
e

c
a

ll
(%

)

1000 2000 3000 4000 5000
0

20

40

60

80

100

Uniform(K=8)
Gauss(K=8)
Zipf(K=8)

(a) Top-8 NN query.

1000 2000 3000 4000 5000
0

20

40

60

80

100

Uniform
Gauss
Zipf

Number of Queries

R
e

c
a

ll
(%

)

(b) Range query.

Figure 10: Recall of complex queries usingHP trace.

Figure 10 shows recall values of complex queries, including range
and top-k (k=8) queries, for theHP trace. We observe that a top-k
query generally achieves higher recall than a range query. The main
reason is that top-k query in essence is a similarity search, thus tar-
geting a relatively smaller number of files. We also notice that re-
quests following a Zipf or Gauss distribution obtain much higher
recall values than those following a uniform distribution. This is
because under a Zipf or Gauss distribution, files are mutually asso-
ciated with a higher degree than under uniform distribution.

5.5 System Scalability

Number of Data Nodes

O
p
tim

a
l T

h
re

sh
o
ld

20 30 40 50 60
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
HP MSN EECS

(a) System scale.
Level Sequence

O
p
ti
m

a
l
T

h
re

s
h
o

ld
1 2 3 4 5

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
HP MSN EECS

(b) Tree levels for 60 nodes.

Figure 11: Optimal thresholds.

We study the impact of system size on the optimal thresholds, as
shown in Figure 11. Recall that Section 1.1 defines a quantitative
measure of semantic correlation, denoted by

∑t

i=1

∑
fj∈Gi

(fj −

Ci)
2, that, when minimized using LSI-based computation, results

in the corresponding optimal threshold. Figure 11(a) shows the
optimal threshold as a function of the number of storage units. Fig-
ure 11(b) shows the optimal thresholds at different levels of the
semantic R-tree. We examine the query accuracy by measuring the
recall measure when executing 2000 requests composed of 1000
range and 1000 top-k queries, as show in Figures 12. These re-
quests are generated based on the Gauss and Zipf distribution re-
spectively. Experimental results show that SmartStore maintains
a high query accuracy as the number of storage units increases,
demonstrating the scalability of SmartStore.

We compare on-line and off-line query performance in terms of
query latency and number of messages as a function of the sys-
tem scale as shown in Figure 13. Figure 13(a) compares the query
latency between two methods, as described in Section 3.4, under
a Zipf distribution. The on-line method identifies the most cor-
related storage unit for the query requests by multicasting mes-

Number of Data Nodes

R
e

ca
ll

(%
)

20 30 40 50 60
0.7

0.75

0.8

0.85

0.9

0.95

1
HP MSN EECS

(a) Gauss distribution.
Number of Data Nodes

R
e

ca
ll

(%
)

20 30 40 50 60
0.7

0.75

0.8

0.85

0.9

0.95

1
HP MSN EECS

(b) Zipf distribution.

Figure 12: Recall as a function of system scale.

sages; whereas, the off-line method stores semantic vectors of the
first-level index units in advance to execute off-line LSI-based pre-
processing to quickly locate the most correlated index unit. Fig-
ure 13(b) compares the number of internal network messages pro-
duced by the on-line and off-line approaches when performing com-
plex queries. We observe that the off-line approach can signifi-
cantly reduce the total number of network messages.

Number of Data Nodes

La
te

nc
y

(m
s)

20 30 40 50 60
0

100

200

300

400

500

600

700
HP(on-line)
MSN(on-line)
EECS(on-line)

HP(off-line)
MSN(off-line)
EECS(off-line)

(a) Average query latency.

Number of Data Nodes

M
es

sa
ge

 N
um

be
r (

10
00

)

20 30 40 50 60
0

30

60

90

120

150

180
HP(on-line)
MSN(on-line)
EECS(on-line)

HP(off-line)
MSN(off-line)
EECS(off-line)

(b) Message numbers.

Figure 13: Performance comparisons using on-line and off-line.

5.6 Overhead and Efficiency of Versioning
Using versioning to maintain consistency among multiple repli-

cas of the root and index nodes of the semantic R-tree, as described
in Section 4.4, introduces some extra costs, i.e., extra space and la-
tency, since SmartStore needs to store versions that are checked for
quickly locating query results.

Similar to evaluating the versioning file systems [31], we adjust
the version ratio, i.e., file modification-to-version ratio, to exam-
ine the overhead introduced by versioning. Figure 14 shows the
versioning overhead in terms of required space and latency when

checking the versions. Due to space limit, this paper only presents
the performances under the MSN and EECS traces.

0 4 8 12 16 20
0

0.4

0.8

1.2

1.6

2

MSN
EECS

Version Ratio

A
v
e
ra

g
e
 s

p
a
c
e
 o

v
e
rh

e
a
d
 f
o
r

v
e
rs

io
n
e
d
 f
ile

 m
e
ta

d
a
ta

 (
G

B
)

1

(a) Space overhead.

0 4 8 12 16 20
0

4

8

12

16

MSN
EECS

Version Ratio

E
x
tr

a
 l
a
te

n
c
y
 (

m
s
)

1

(b) Extra latency.

Figure 14: Versioning overhead in space and access latency.

Figure 14(a) shows the average required space in each index unit.
The space overhead is tightly associated with the version ratio. If
the ratio is 1, it is called a comprehensive versioning, and every
change results in a version, thus requiring the largest storage space.
When the ratio is increased, changes usually are aggregated to pro-
duce a version to reduce space overhead. The extra space overhead
on the whole is acceptable since most existing computers can be
expected to provide at least 2GB memory that is sufficient for ver-
sions.

Figure 14(b) shows the extra latency incurred verifying query re-
sults in the versions. Compared with the entire query latency, the
additional versioning latency is no more than 10%. The reason is
that all versions only need to record small changes stored in mem-
ory and we use rolling backward to reduce unnecessary checking
on stale information.

SmartStore uses versioning and updates aggregated changes to
maintain consistency and improve query accuracy. Tables 5 and 6
show the recalls of range and top-k queries with and without ver-
sioning, as a function of the number of queries, for theMSN and
EECStraces. Experimental results confirm that SmartStore with
versioning can significantly improve query accuracy.

Table 5: Recall of range and top-k queries usingMSN.
1000 2000 3000 4000 5000

Uniform
Range Query 86.2 85.7 84.5 83.2 82.8
Versioning 93.5 92.7 92.2 91.6 91.1

K=8 90.5 89.7 87.4 86.2 85.8
Versioning 96.7 96.4 96.2 95.8 95.6

Gauss
Range Query 90.5 89.3 88.6 87.7 86.4
Versioning 96.8 95.9 95.2 94.8 94.3

K=8 95.8 94.2 93.5 92.4 91.6
Versioning 100 99.6 99.3 99.1 98.8

Zipf
Range Query 91.2 90.5 89.3 88.7 87.3
Versioning 100 99.2 98.8 98.6 98.5

K=8 96.5 95.1 94.3 93.6 92.6
Versioning 100 100 100 99.8 99.6

6. RELATED WORK
Wecompare SmartStore with state-of-the-art approaches in content-

based search, directory subtree partitioning and database solution.

6.1 Content-based Search
One of the most prevalent metadata queries is content-based query

by examining the contents and pathnames of files, such as attribute-
based naming in the Semantic file system [36] and content-based
search tool in Google Desktop [37]. However, the efficiency of

Table 6: Recall of range and top-k queries usingEECS.
1000 2000 3000 4000 5000

Uniform
Range Query 87.3 86.5 84.6 83.2 81.5
Versioning 95.4 95.2 94.8 94.6 94.3

K=8 91.5 90.2 89.8 87.4 85.6
Versioning 97.6 97.3 97.1 96.6 96.2

Gauss
Range Query 89.7 88.2 87.5 85.5 83.1
Versioning 96.6 96.3 96.1 95.7 95.5

K=8 96.7 95.1 94.2 92.3 91.1
Versioning 100 100 99.8 99.5 99.1

Zipf
Range Query 90.2 89.6 87.5 86.7 84.8
Versioning 100 99.7 99.4 98.9 98.6

K=8 97.3 96.2 94.8 93.5 92.7
Versioning 100 100 100 100 99.7

content-based search heavily depends on files that contain explic-
itly understandable contents, while ignoring file context that is uti-
lized by most users in organizing and searching their data [38].
Furthermore, typical techniques successful for the web search, such
as HITS algorithm [39] and Google search engine [40], leverage
tagged and contextual links that do not inherently, let alone explic-
itly, exist in large-scale file systems.

6.2 Directory-based Subtree Partitioning
Subtree-partitioning based approaches have been widely used in

recent studies, such as Ceph [3], GIGA+ [41], Farsite [2] and Spy-
glass [8]. Ceph [3] maximizes the separation between data and
metadata management by using a pseudo-random data distribution
function to support a scalable and decentralized placement of repli-
cated data. Farsite [2] makes the improvement on distributed di-
rectory service by utilizing tree-structured file identifiers that sup-
port dynamically partitioning on metadata at arbitrary granularity.
GIGA+ [41] extends classic hash-tables to build file system direc-
tories and uses bitmap encoding to allow hash partitions to split
independently, thus obtaining high update concurrency and paral-
lelism. Spyglass [8] exploits the locality of file namespace and
skewed distribution of metadata to map the namespace hierarchy
into a multi-dimensional K-D tree and uses multi-level versioning
and partitioning to maintain consistency. However, in its current
form, Spyglass focuses on the indexing on a single server and can-
not support distributed indexing on multiple servers.

In contrast, SmartStore uses bottom-up semantic grouping and
configures a file organization scheme from scratch, which is in
essence different from the above subtree-partitioning approaches
that often exploit semantics of already-existing file systems to or-
ganize files. Specifically, SmartStore leverages semantics of multi-
dimensional attributes, of which namespace is only a part, to adap-
tively construct distributed semantic R-trees based on metadata se-
mantics and support complex queries with high reliability and fault
tolerance. The self-configuration benefit allows SmartStore to flex-
ibly construct one or more semantic R-trees to accurately match
query patterns.

6.3 Database Solution
Researchers in the database field aim to bring database capacity

to Petabyte scales with billions of records. Some database vendors
developed parallel databases to support large-scale data manage-
ment, such as Oracle’s Real Application Cluster database [42] and
IBM’s DB2 Parallel Edition [43], by using a complete relational
model with transactions. Although successful for managing rela-
tional databases, existing database management systems (DBMS)
do not fully satisfy the requirements of metadata search in large-

scale file systems.

• Application Environments: DBMS often assumes dedicated
high-performance hardware devices, such as CPU, memory,
disk and high-speed networks. Unfortunately, real-world ap-
plications, such as portable storage and personal devices, pro-
vide limited capacity to support complex queries for manag-
ing metadata.

• Attribute Distribution : DBMS treats file attributes equally
and assumes uniform distribution of their values, ignoring
skewed distribution of file metadata. A case in point is that
DBMS considers file pathnames as a flat string attribute and
ignores the locality of namespace.

• Access Locality: Database techniques generally cannot take
full advantage of important characteristics of file systems,
such as access locality and “hot spot" data, to enhance system
performance.

Database research community has argued that existing DBMS
for general-purpose applications would not be a “one size fit all"
solution [44] and improvements may result from semantic-based
designs [45].

7. CONCLUSION
The paper presents a new paradigm for organizing file metadata

for next-generation file systems, called SmartStore, by exploiting
file semantic information to provide efficient and scalable com-
plex queries while enhancing system scalability and functionality.
The novelty of SmartStore lies in it matches actual data distribution
and physical layout with their logical semantic correlation so that
a complex query can be successfully served within one or a small
number of storage units. Specifically, this paper has three main
contributions. (1) A semantic grouping method is proposed to ef-
fectively identify files that are correlated in their physical attributes
or behavioral attributes. (2) SmartStore can very efficiently support
complex queries, such as range and top-k queries, which will likely
become increasingly important in the next-generation file systems.
(3) Our prototype implementation proves that SmartStore is highly
scalable, and can be deployed in a large-scale distributed storage
system with a large number of storage units.

Acknowledgement
This work was supported in part by National Natural Science Foun-
dation of China (NSFC) under Grant 60703046, National Basic
Research 973 Program under Grant 2004CB318201, US National
Science Foundation (NSF) under Grants 0621493 and 0621526,
HUST-SRF No.2007Q021B and the Program for Changjiang Schol-
ars and Innovative Research Team in University No. IRT-0725.

8. REFERENCES
[1] J. Nunez, “High End Computing File System and I/O R&D

Gaps Roadmap ,”High Performance Computer Science
Week, ASCR Computer Science Research, August, 2008.

[2] J. R. Douceur and J. Howell, “Distributed Directory Service
in the Farsite File System,”Proc. OSDI, pp. 321–334, 2006.

[3] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and
C. Maltzahn, “Ceph: A scalable, high-performance
distributed file system.,”Proc. OSDI, 2006.

[4] D. Roselli, J. Lorch, and T. Anderson, “A comparison of file
system workloads,”Proc. USENIX Conference, pp. 41–54,
2000.

[5] A. Traeger, E. Zadok, N. Joukov, and C. Wright, “A nine
year study of file system and storage benchmarking,”ACM
Transactions on Storage, no. 2, pp. 1–56, 2008.

[6] A. Szalay, “New Challenges in Petascale Scientific
Databases,”Keynote Talk in Scientific and Statistical
Database Management Conference (SSDBM), 2008.

[7] M. Seltzer and N. Murphy, “Hierarchical File Systems are
Dead,”Proc. HotOS, 2009.

[8] A. W. Leung, M. Shao, T. Bisson, S. Pasupathy, and E. L.
Miller, “Spyglass: Fast, Scalable Metadata Search for
Large-Scale Storage Systems,”Proc. FAST, 2009.

[9] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. Gruber, “Bigtable:
A distributed storage system for structured data,”Proc.
OSDI, 2006.

[10] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W.
Oą́rToole, “Semantic file systems,”Proc. SOSP, 1991.

[11] P. Gu, Y. Zhu, H. Jiang, and J. Wang, “Nexus: A Novel
Weighted-Graph-Based Prefetching Algorithm for Metadata
Servers in Petabyte-Scale Storage Systems,”Proc. CCGrid,
2006.

[12] S. Deerwester, S. Dumas, G. Furnas, T. Landauer, and
R. Harsman, “Indexing by latent semantic analysis,”J.
American Society for Information Science, pp. 391–407,
1990.

[13] C. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala,
“Latent Semantic Indexing: A Probabilistic Analysis,”
Journal of Computer and System Sciences, vol. 61, no. 2,
pp. 217–235, 2000.

[14] S. Doraimani and A. Iamnitchi, “File Grouping for Scientific
Data Management: Lessons from Experimenting with Real
Traces,”Proc. HPDC, 2008.

[15] A. Leung, S. Pasupathy, G. Goodson, and E. Miller,
“Measurement and analysis of large-scale network file
system workloads,”Proc. USENIX Conference, 2008.

[16] P. Xia, D. Feng, H. Jiang, L. Tian, and F. Wang, “FARMER:
A Novel Approach to File Access coRrelation Mining and
Evaluation Reference model for Optimizing Peta-Scale File
Systems Performance,”Proc. HPDC, 2008.

[17] E. Riedel, M. Kallahalla, and R. Swaminathan, “A
framework for evaluating storage system security,”Proc.
FAST, 2002.

[18] S. Kavalanekar, B. Worthington, Q. Zhang, and V. Sharda,
“Characterization of storage workload traces from
production Windows servers,”Proc. IEEE International
Symposium on Workload Characterization (IISWC), 2008.

[19] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer, “Passive
NFS Tracing of Email and Research Workloads,”Proc.
FAST, 2003.

[20] Y. Hua, H. Jiang, Y. Zhu, D. Feng, and L. Tian, “SmartStore:
A New Metadata Organization Paradigm with Metadata
Semantic-Awareness for Next-Generation File Systems,”
Technical Report, University of Nebraska- Lincoln,
TR-UNL-CSE-2008-0012, November, 2008.

[21] Y. Hua, H. Jiang, Y. Zhu, D. Feng, and L. Tian, “SmartStore:
A New Metadata Organization Paradigm with
Semantic-Awareness ,”FAST Work-in-Progress Report and
Poster Session, February, 2009.

[22] B. Zhu, K. Li, and H. Patterson, “Avoiding the disk
bottleneck in the data domain deduplication file system,”
Proc. FAST, 2008.

[23] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar,
G. Trezise, and P. Camble, “Sparse Indexing: Large Scale,
Inline Deduplication Using Sampling and Locality,”Proc.
FAST, 2009.

[24] X. Liu, A. Aboulnaga, K. Salem, and X. Li, “CLIC:
CLient-Informed Caching for Storage Servers,”Proc. FAST,
2009.

[25] M. Li, E. Varki, S. Bhatia, and A. Merchant, “TaP:
Table-based prefetching for storage caches,”Proc. FAST,
2008.

[26] A. Guttman, “R-trees: A dynamic index structure for spatial
searching,”Proc. SIGMOD, 1984.

[27] B. Bloom, “Space/time trade-offs in hash coding with
allowable errors,”Communications of the ACM, vol. 13,
no. 7, pp. 422–426, 1970.

[28] Y. Hua, Y. Zhu, H. Jiang, D. Feng, and L. Tian, “Scalable
and Adaptive Metadata Management in Ultra Large-scale
File Systems,”Proc. ICDCS, 2008.

[29] G. Golub and C. Van Loan,Matrix Computations. Johns
Hopkins University Press, 1996.

[30] J. Hartigan and M. Wong, “Algorithm AS 136: A K-means
clustering algorithm,”Applied Statistics, pp. 100–108, 1979.

[31] C. A. N. Soules, G. R. Goodson, J. D. Strunk, and G. R.
Ganger, “Metadata efficiency in versioning file systems,”
Proc. FAST, 2003.

[32] Y. Zhu, H. Jiang, J. Wang, and F. Xian, “HBA: Distributed
Metadata Management for Large Cluster-based Storage
Systems,”IEEE Transactions on Parallel and Distributed
Systems, vol. 19, no. 4, pp. 1–14, 2008.

[33] D. Comer, “The ubiquitous B-tree,”ACM Comput. Surv.,
vol. 11, no. 2, pp. 121–137, 1979.

[34] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone,
“Handbook of applied cryptography,”CRC Press, 1997.

[35] B. Piwowarski and G. Dupret, “Evaluation in (XML)
information retrieval: Expected precision-recall with user
modelling (EPRUM),”Proc. SIGIR, pp. 260–267, 2006.

[36] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O. Jr,
“Semantic file systems,”Proc. SOSP, 1991.

[37] “Google Desktop,”http://desktop.google.com/.
[38] C. Soules and G. Ganger, “Connections: using context to

enhance file search,”Proc. SOSP, 2005.
[39] J. KLEINBERG, “Authoritative Sources in a Hyperlinked

Environment,”Journal of the ACM, vol. 46, no. 5,
pp. 604–632, 1999.

[40] “Google,” http://www.google.com/.
[41] S. Patil and G. Gibson, “GIGA+ : Scalable Directories for

Shared File Systems,”Carnegie Mellon University Parallel
Data Lab Technical Report CMU-PDL-08-110, 2008.

[42] “ORACLE.COM,” www.oracle.com/technology/products/-
database/clustering/index.html. Product page.

[43] C. Baru, G. Fecteau, A. Goyal, H. Hsiao, A. Jhingran,
S. Padmanabhan, G. Copeland, and W. Wilson, “DB2
parallel edition,”IBM Systems journal, vol. 34, no. 2,
pp. 292–322, 1995.

[44] M. Stonebraker and U. Cetintemel, “One size fits all: an idea
whose time has come and gone,”Proc. ICDE, 2005.

[45] M. Franklin, A. Halevy, and D. Maier, “From databases to
dataspaces: a new abstraction for information management,”
ACM SIGMOD Record, vol. 34, no. 4, pp. 27–33, 2005.

