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Abstract— Although data prefetching algorithms have been
extensively studied for years, there is no counterpart research
done for metadata access performance. Existing data prefetching
algorithms, either lack of emphasis on group prefetching, or
bearing a high level of computational complexity, do not work
well with metadata prefetching cases. Therefore, an efficient,
accurate and distributed metadata-oriented prefetching scheme
is critical to leverage the overall performance in large distributed
storage systems. In this paper, we present a novel weighted-
graph-based prefetching technique, built on both direct and
indirect successor relationship, to reap performance benefit
from prefetching specifically for clustered metadata servers, an
arrangement envisioned necessary for petabyte scale distributed
storage systems. Extensive trace-driven simulations show that
by adopting our new metadata prefetching algorithm, the miss
rate for metadata accesses on the client site can be effectively
reduced, while the average response time of metadata operations
can be dramatically cut by up to 67%, compared with legacy
LRU caching algorithm and existing state of the art prefetching
algorithms.

Index terms: Prefetch, algorithm, metadata, storage

I. INTRODUCTION

A novel decoupled storage architecture diverting actual file

data flows away from metadata traffic has emerged to be an

effective approach to alleviate the I/O bottleneck in modern

storage systems [1]–[4]. Unlike conventional storage systems,

these new storage architectures use separate servers for data
and metadata services, respectively, as shown in Figure 1.

Accordingly, large volume of actual file data does not need

to be transferred through metadata servers, which significantly

increases the data throughput. Previous studies on this new

storage architecture mainly focus on optimizing the scalability

and efficiency of file data accesses by using a RAID style

striping [5], [6], caching [7], scheduling [8] and network-

ing [9]. Only recent years have seen growing activities in

studying the scalability of the metadata management [2], [10]–

[12]. However, the performance of metadata services plays a

critical role in achieving high I/O scalability and throughput,

Fig. 1. System architecture

especially in light of the rapidly increasing scale in modern

storage systems for various data intensive supercomputing

applications, such as predicting and modeling the effects of

earthquakes and web search without language barriers. In these

applications the volume of data reaches and even exceeds

Peta bytes (1015 bytes) while metadata amounts to Tera bytes

(1012 bytes) or more [13]. In fact, more than 50% of all

I/O operations are to metadata [14], suggesting further that

multiple metadata servers are required for a petabyte-scale

storage system to avoid potential performance bottleneck on

a centralized metadata server. This paper takes advantages of

some unique characteristics of metadata and proposes a new

prefetching scheme particularly for metadata accesses that is

able to scale up the performance of metadata services in large

scale storage systems.

By exploiting the access locality widely exhibited in most

I/O workloads, caching and prefetching have become an

effective approach to boost I/O performance by absorbing a

large number of I/O operations before they touch disk sur-

faces. However, existing caching and prefetching algorithms

may not work well for metadata since most caching and

prefetching schemes are designed for and tested on actual
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file data and simply ignore metadata characteristics. As a

result of this negligence, traditional caching and prefetching

algorithms are not specifically optimized for metadata. And

thus they may consequently not fit well with metadata access

cases because file data and metadata operations usually have

different characteristics and exhibit different access behaviors.

For example, a file might be read multiple times while its

metadata is only accessed once. An “ls -l” command touches

the metadata of multiple files but might not access their

data. In addition, the size of metadata is typically uniform

and much smaller than the size of file data in most file

systems (regarding this point, we will show further elucidation

in section III). With a relatively small data size, the mis-

prefetching penalty for metadata on both the disk side and

the memory cache side is likely much less than that for file

data, allowing the opportunity for exploring and adopting more

aggressive prefetching algorithms. In contrast, most of the

previous prefetching algorithms share the same characteristic

in that they are conservative on prefetching. They typically

prefetch at most one file upon each cache miss. Moreover, even

when a cache miss happens, certain rigid policies are enforced

before issuing a prefetching operation in order to maintain a

high level of prefetching accuracy. The bottom line is, they did

not realize that considering the huge number and the relatively

small size of metadata items, aggressive prefetching can be

profitable.
On the other hand, aggressive prefetching or group-based

prefetching can easily balance out their advantages by intro-

ducing 1) extra burden to the disk, 2) cache pollution and 3)

high CPU runtime overhead. Hence, part of the challenges in

developing an aggressive prefetching algorithm is to address

the three problems at the same time.
In this paper, we make the following contributions.

• We develop a novel weighted-group-based prefetching

algorithm named Nexus particularly for metadata ac-

cesses, featured in aggressive prefetching while main-

taining adequate prefetching accuracy and polynomial

runtime overhead. Although there exist group prefetching

algorithms for data, the different size distributions and

access characteristics between data and metadata are sig-

nificant enough to justify a dedicated design for metadata

access performance.

• We deploy both direct and indirect successors to better

capture access localities and to scrutinize the real suc-

cessor relationship among interleaved accesses sequence.

Hence, Nexus is able to perform aggressive group-

based prefetching without compromising accuracy. As a

comparison, existing group based prefetching algorithms

only consider the immediate successor relationships when

building their access graphs. In other words, existing

group based prefetching algorithms seem to be “short

sighted” when compared with Nexus and thus potentially

bear less accuracy.

• Finally, in Nexus we defined a relationship strength to

build the access relationship graph for group prefetching.

The way we obtain this relationship strength makes

Nexus a polynomial time complexity algorithm. Other

group-based prefetching algorithms, if adopted and made

suitable to achieve the same level of “far sight” as Nexus

does, could easily be mired in an exponential computa-

tional complexity. Therefore, Nexus distinguishes itself

from others by its much lower runtime overhead.

The outline of the rest of the paper is as follows: related

work is discussed in Section II. Section III shows the funda-

mental difference between data and metadata size distribution.

Section IV describes our Nexus algorithm in detail. Evaluation

methodologies and results are discussed in section V. We

conclude this paper in section VI.

II. RELATED WORK

Prefetching and caching has long been studied and im-

plemented in modern file systems. In the area of disk level

and file level prefetching, most previous work was done in

three major areas: predictive prefetching [15], [16], application

controlled prefetching [17]–[19], and compiler directed I/O

[20], [21]. The latter two have limited applicability due to their

constraints. For example, application controlled prefetching

requires source code revision, and compiler directed I/O relies

on a sufficient time interval between prefetching instructions

inserted by the compiler and the following actual I/O in-

structions. Since predictive prefetching, using the past access

pattern to predict future accesses, is completely transparent

to clients, it is more suitable for general practice, including

metadata prefetching.

Unfortunately, although the split data-metadata storage sys-

tem has become ever popular for providing large scale stor-

age solutions, there is a general negligence on the study

of prefetching algorithms specifically for metadata servers:

current predictive prefetching algorithms are for data but not

metadata.

In order to better illustrate the difference between our Nexus

algorithm and other predictive prefetching algorithms, next we

briefly introduce some background in this field.

On prefetching objects in object-oriented database, Curewitz

developed a probabilistic approach [22]. On prefetching whole

files, Griffioen and Appleton introduced a probability graph

based approach to study file access patterns [23]. In addition,

Duchamp et al. studied an access tree based prediction ap-

proach [16]. However, in all abovementioned studies, only the

immediate successors relationship are taken into considera-

tion, while indirect successors relationship are ignored. The

advantages of approaches considering both immediate and

subsequent successor relationships are discussed in detail in

section IV.

Based on the previous research, Long et al. developed

a serial of successor-based predictive prefetching algorithms

in their efforts to advance the prefetching accuracy while

maintaining a reasonable performance gain [24]–[26]. The

features of these predictors are summarized below as they are

state of the art and are most relevant to our design.

a) First Successor [25]: The file that followed file A the

first time A was accessed is always predicted to follow A.

b) Last Successor [25]: The file that followed file A the

last time A was accessed is predicted to follow A.
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c) Noah (Stable Successor) [25]: Similar to Last Suc-

cessor, except that a current prediction is maintained; and

the current prediction is changed to last successor if last

successor was the same for S consecutive accesses where S
is a predefined parameter.

d) Recent Popularity (Best j-out-of-k) [27]: Based on

last k observations on file A’s successors, if j out of those k
observations turn out to target the same file B, then B will be

predicted to follow A.

e) Probability-based Successor Group Prediction [27]:
Based on file successor observations, a file relationship graph

is built to represent the probability of a given file following

another. Based on the relationship graph, the prefetch strategy

builds the prefetching group with a predefined size S by

following steps:

1) Add the missed item to the group.

2) Add the items with the highest conditional probability

under the condition the items in the current prefetching

group were accessed together.

3) Repeat step 2 until the group size limitation S is met.

Among the aforementioned five predictors, the three former

ones fall into the category of single-successor predictors.

If the two latter predictors are revised to take additional

indirect successors into consideration for relationship graph

construction, they would inevitably introduce exponential time

overhead. The detail is explained in IV-D.2.

III. FILE DATA AND METADATA SIZE DISTRIBUTION

A. Obtaining file data size distribution

To find out the difference between file data and metadata

size distribution, we studied the files stored on the Franklin su-

percomputer [28]. Franklin is a massively parallel processing

(MPP) system with 9,660 compute nodes, serving more than

1,000 users at National Energy Research Scientific Computing

Center. The collection of file size distribution is somewhat

straightforward compared with the metadata size case. We

simply run a “ls -lR /” on the head node and then use a

script to filter out the file size information from the output.

Note that since we do not have the privilege to access all

the files and directories stored on the system, by running

these scripts we only get the size information of those files

and directories that are accessible. In this study, we collected

the size information for 8,209,710 regular files and 612,248

directories. The cumulative distribution function (CDF) of

collected file size distribution results is shown in Figure 2.

B. Obtaining metadata size distribution

Obtaining the metadata size information is not simple. To

the best of our knowledge, there is no direct way/utility in

existence to find out the metadata size information for files and

directories. However, there does exist a way of figuring out the

corresponding metadata size if we know the file size (assuming

file system type and the block size are given). For example,

in an Ext2 file system, the metadata of a regular file consists

of two components: a mandatory inode block and conditional

indirect addressing blocks. According to latest Linux kernel

TABLE I

SIZE CONVERSION BETWEEN FILE DATA AND METADATA

Block Addressing Metadata
size Mode File size size

Direct ≤ 12 KB 128 B
1024 1-Indirect 12 KB∼268 KB 1152 B

2-Indirect 268 KB∼64.26 MB 3200 B
3-Indirect 64.26 MB∼16.06 GB 6272 B

Direct ≤24 KB 128 B
2048 1-Indirect 24 KB∼1.02 MB 2176 B

2-Indirect 1.02 MB∼513.02 MB 6272 B
3-Indirect 513.02 MB∼256.5 GB 12416 B

Direct ≤48 KB 128 B
4096 1-Indirect 48 KB∼4.04 MB 4224 B

2-Indirect 4.04 MB∼4 GB 12416 B
3-Indirect 4 GB∼4 TB 24704 B

source code as of this writing (version 2.6.25.9 released on

June 24, 2008 [29]), each Ext2 inode structure is 128 bytes in

length. This inode structure contains 12 direct block pointers

plus 1 indirect block pointer, 1 double indirect block pointer

and 1 triple indirect block pointer [30]. Once the block size

is given, we are able to calculate the on-disk space occupied

by indirect addressing blocks for files of any given size. The

resulting metadata size is then the sum of the inode block

size and the space for indirect addressing blocks. The detailed

size mapping information between file data and metadata is

summarized in Table I.

Note that Franklin’s user home directory uses the Lustre

file system, which subsequently uses Ext3 file sytem as its

back-end file system [31]. Furthermore, Ext3 file system’s data

structures on disk are essentially identical to those of an Ext2

file system, except that it employs a journal to log metadata

and data changes. This means the method we just described

can be applied to calculate the metadata size based on the

file data size collected. For example, given a block size of

4 KBytes (which is the basic block size for back-end Ext3

file systems chosen by Lustre file system developers) and a

file size of 3 MB, the corresponding metadata size will be

4224 bytes (highlighted in Table I). Note that although this

calculation applies only to Ext2 or Ext3 local file system,

similar calculations can be applied to and similar conclusions

can be drawn for other parallel or distributed file systems such

as GPFS [32], PVFS, Panasas [33], and Ceph. All of these file

systems use some form of pointers to refer to certain chunk(s)

of data, regardless of whether these data are stored as regular

blocks, local files, or objects.

According to the file size distribution, we obtain the corre-

sponding metadata size distribution for the files, and the results

are shown together with the file size distribution in Figure 2

for ease of comparison.

C. Directory size distribution

Metadata include both file inodes and directories: we have

so far discussed the metadata size for file inodes, It may

also be interesting to find out the directory size distribution.

Directories are organized the same way as regular files in

a Linux-based system. By directory size we simply mean

the space in bytes occupied by those file names under the
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Fig. 2. Size distribution comparison of file data and metadata

directory. To obtain directory size for certain directory, we

iterate all the files and sub-directories under that directory and

sum the length of all the file names and sub-directory names1.

The corresponding results are shown in Figure 3. According

to these results, around 95% of the directory sizes are less

than 600 bytes.
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D. Comparison

From the study of distinction between data and metadata

size distribution on Franklin supercomputer, we observe that

the file size distribution and metadata size distribution are quite

different. For both data and metadata that are less than 64

bytes, the percentage is very small, i.e. less than 2%. However,

around 71% of files are larger than 8 KBytes; while more than

97% of metadata are smaller than 8 KBytes under all three

different block sizes. Moreover, Figure 4 shows the exact size

distribution of the metadata under different block sizes in a

more direct and conspicuous way.

Specifically, Figure 4(a) shows that for 1 KBytes block

size, 89% of metadata are less than or equal to 1152 bytes.

Figure 4(b) shows that for 2 KB block size, 94% of metadata

are 2176 bytes or less. Figure 4(c) shows that for 4 KB block

size, the percentage of metadata sizes larger than 4224 bytes

is almost negligible.

1the length of file name including a ending ‘\0’ should be rounded/aligned
to a multiple of four bytes, which is an optimization done in the Ext2 file
system implementation.

Based on our file data and metadata size distribution

research, we observe that compared with typical file size,

metadata are relatively small. We envision that the same

conclusion holds for petabyte scale storage system if there is

no significant change on the way the file systems manage their

data and metadata. Consequently, in order to achieve optimal

performance, a new prefetching algorithm that considers the

size differences between data and metadata is clearly desir-

able. And a good example to be considered is an aggressive

prefetching scheme.

IV. NEXUS: A WEIGHTED-GRAPH-BASED PREFETCHING

ALGORITHM

As a more effective way for metadata prefetching, our

Nexus algorithm distinguishes itself in three aspects. First,

Nexus can more accurately capture the metadata access tempo-

ral locality exhibited in metadata access streams by observing

the affinity among both immediate and subsequent successors.

Second, Nexus exploits the fact that metadata usually is small

in size and deploy an aggressive prefetching strategy. Third,

Nexus maintains a polynomial runtime overhead.

A. Relationship graph overview

Our algorithm uses a metadata relationship graph to assist

prefetching decision making. The relationship graph is used

to dynamically represent the locality strength between prede-

cessors and successors in metadata access streams. Directed

graphs are chosen to represent the relationship since the rela-

tionship between a predecessor and a successor is essentially

unidirectional. Each metadatum corresponding to a file or

directory is represented as a vertex in our relationship graph.

The locality strength between a pair of metadata items is rep-

resented as a weighed edge. To illustrate this design, Figure 5

shows an artificially simplified example of relationship graph

consisting of metadata for six files/directories. An observation

obtained on this toy example is that the predecessor-successor

relationship between /usr and /usr/bin is much stronger than

that between /usr and /usr/src.

B. Relationship graph construction

To understand how this relationship graph works for im-

proved prefetching performance, it is necessary to first under-

stand how this graph is built. The relationship graph is built on

the fly while the MetaData Server (MDS) receives and serves

requests from a large number of clients. A look-ahead history

window with a predefined capacity is used to keep the requests

most recently received by the MDS server.

For example, if the history window capacity is set to ten,

only ten most recent requests are kept in the history window.

Upon the arrival of a new request, the oldest request in this

history window is replaced by the newcomer. In this way the

history window is dynamically updated and always contains

the current predecessor-successor relationship at any time. The

relationship information is then integrated into the graph on

a per-request basis, by either inserting a new edge (if the

predecessor-successor relationship is discovered for the very
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Fig. 5. Relationship graph demo

// Let G denote the graph to be built

BUILD-RELATIONSHIP-GRAPH(G)

1 G ← ∅

2 for each new incoming metadata request j

3 for each metadata request i (i �= j) in history window

4 if edge (i, j) /∈ G

5 then add an edge (i, j) to G with appropriate weight

6 else add appropriate weight to edge (i, j)

7 replace the oldest item in history window with j

Fig. 6. Nexus grouping algorithm pseudocode

first time) or add appropriate weight to an existing edge (if

this relationship has been observed before).

A piece of pseudocode describing how the relationship

graph is built from the beginning is provided in Figure 6 and

an example is given in Figure 7 for better understanding.

In this example, an sample request sequence of

ABCADCBA · · ·
is given. Figure 7(a) shows the step by step graph construction

from scratch with a history window size of two ( The weight

assignment methodology assumed here is linear decremental,

described later in Section IV-E.1 on page 7 ). In contrast,

Figure 7(b) shows the same relationship graph construction

procedure with a history window size of three.

C. Prefetching based on the relationship graph

Once the graph is built for the access sequence

ABCADCBA · · · as shown in Figure 7(a) or Figure 7(b),

TABLE II

PREDICTION RESULTS COMPARISON. P1 MEANS PREFETCHING WITH

GROUP SIZE = 1; P2 MEANS PREFETCHING WITH GROUP SIZE = 2; N2

MEANS NEXUS WITH HISTORY WINDOW SIZE = 2; N3 MEANS NEXUS

WITH HISTORY WINDOW SIZE = 3

N2 N3

P1 C B
P2 CD CB

we are now ready to prefetch a number of successors as a

group with a configurable size in the graph when a cache

miss happens for an element in that group. The prediction

result depends on the order of the weights (represented by

numbers associated with arrows in Figure 7) of outbound

edges originated from the latest missed element. A larger

weight indicates a closer relationship and a higher prefetching

priority. Assuming the last request A in the above sample

access sequence sees a miss, according to the graph shown in

Figure 7(a), the prediction result will be {C} if the prefetching

group size is one, or {C,D} if the prefetching group size is

two; similar results deduced from Figure 7(b) will be {B} and

{B, C}, respectively (as shown in Table II).

D. Major advantages of Nexus
1) The farther the sight, the wiser the decision: The key

difference between the relationship-based and probability-

based approaches lies in the ability to look farther than the

immediate successor. The shortcoming of the probability-

based prefetching model is obvious: it only considers the

immediate successors as candidates for future prediction. As a

consequence, any successors after the immediate successor are

ignored. This short-sighted method is incapable of identifying

the affinity of two references with some intervals, which

widely exists in many applications. For example, for the

pattern “A?B”, we can easily find two situations where this

pattern exhibits.

• Compiling programs: gcc compiler(“A”) is always first

launched; and then the source code(“?”) to be compiled

is loaded; at last the common header files or common

shared libraries (“B”) is loaded afterward.

• Multimedia application: initially media player application

(“A”) is launched; after that the media clip (“?”) to be
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(a) Look-ahead history window size = 2 (b) Look-ahead history window size = 3

Fig. 7. Graph construction examples

played is loaded; at last the decoder program (“B”) for

that type of media is loaded.

In addition to above mentioned applications, interleaved

application I/Os coming from multi-core computers or from

many clients will only make things worse. The probability-

based model can not detect such access patterns, thus limiting

its ability to make better predictions. However, this omitted

information is taken into consideration in our relationship-

based prefetching algorithm, which is able to look farther than

the immediate successor when we build our relationship graph.

We use the same aforementioned sample trace sequence,

ABCADCBA · · · , to further illustrate the difference be-

tween the probability-based approach and our relationship-

based method. In the probability-based model, since C never

appears immediately after A, C will never be predicted as A’s

successor. In fact, the reference stream shows that C is a good

candidate as A’s indirect successor because it always shows up

next next to A. The rationale is that the pattern we observed is

a repetition of pattern “A?C” and thus we predict this pattern

will repeat in the near future. As discussed in IV-C, should

our relationship-based prediction be applied, three out of four

prediction results will contain C.

From the above example, we clearly see the advantages of

relationship-based prefetching over probability-based prefetch-

ing. The essential ability to look farther than the immediate

successor directly renders this advantage.

2) Farther sight within small overhead: The aforemen-

tioned advantage comes at the cost of a look-ahead history

window. This approach appears to be prohibitive for other

online prefetching algorithms due to potential high runtime

overhead. However, this overhead is kept minimum in our

design. In fact, we actually achieved a polynomial time

complexity for our relationship graph construction algorithm

as shown in Figure 6.

Theorem 1: The Nexus grouping algorithm given in Fig-

ure 6 bears polynomial time complexity

Proof: Let L denote the look-ahead history window

size; let n denote the length of the entire metadata access

history. We will first calculate the time required by each

step described in Figure 6 and then derive the aggregated

algorithm complexity. Step 1 always takes constant time,

i.e., O(1). Step 2 dictates that step 3 through 7 should be

executed n times. Consequently steps 3 dictates that steps 4

through 6 should run L times. Step 4 requires constant time

assuming a two-dimensional adjacency matrix representation

is adopted for graph G. Either step 5 or step 6 is chosen

to be executed next according to runtime conditions. Step

5 requires O(N2) and step 6 requires O(1) constant time,

regardless of which one is selected, the worst case scenario

is O(N2) for step 5 and 6 combined. Step 7 also takes

constant time, as it replaces the oldest item by overwriting

the array element in the circular history window pointed by

the last-element-pointer and shifting that pointer to the next

element, thus no scanning or searching is involved. Putting it

all together, the worst case time complexity for this algorithm

is O(1)+O(n) ·{O(L) · [O(1)+O(N2)]+O(1)} = O(n3 ·L),
which means a polynomial time complexity.

In contrast, should we apply the same idea to a probability-

based approach, the complexity of the algorithm would be

exponential. For example, if look-ahead history window size
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is set to 2 (i.e., L=2) rather than 1 (L=1 means only looking at

the immediate successor), a probability-based approach would

maintain the conditional probability per 3-tuple P (C|AB)
instead of per 2-tuple P (B|A). Under the same assumption

for graph representation as used in the proof above, we can

prove that the time complexity will be O(nL) for probability-

based approach as opposed to O(n·L) for Nexus. If we choose

to switch to adjacency list graph representation for the sake of

potential less memory usage2, the algorithm time complexity

would grow to prohibitive O(nL+2) for a probability-based

approach while only O(n3 · L) for Nexus.

3) Aggressive prefetching is natural for metadata servers:
All previous prefetching algorithms tend to be conservative

due to the prohibitive mis-prefetch penalty and cache pol-

lution [34]. However, the penalty of an incorrect metadata

prefetch might be much less prohibitive than that of the

file data prefetch, and the cache pollution problem is not as

severe as in the case of file data caching. The evidence is the

observation that 99% of metadata are less than 4224 bytes,

while 40% of file data are larger than 4 KB, as observed

in III-D. On the other hand, we also observe that metadata

servers and compute nodes equipped with multiple gigabytes

or even terabytes of memory become norm. These observations

encourage us to conduct aggressive prefetching on metadata,

considering that a single cache miss at the client site will

result in a mandatary network round-trip latency plus potential

disk operation overhead when the requested metadata server

consequently sees a cache miss.

E. Algorithm design considerations

When implementing our algorithms, several design factors

need to be considered to optimize the performance. Corre-

sponding sensitivity studies on those factors are carried out as

follows.

1) Successor relationship strength: Assigning an appropri-

ate weight between the nodes to represent the strength of

their relationship as predecessor and successor is critical to

our algorithm because it affects the prediction accuracy of our

algorithm. A formulated description of this problem is: Given

an access sequence of length n:

M1M2M3 . . . Mn,

how much weight should be added to the predecessor-

successors edges,

(M1,M2), (M1, M3), . . . , (M1,Mn),

respectively. Four approaches are taken into consideration:

• Identical assignment Assigning all the successors of

M1 the same importance. This approach is very similar

to the probability model introduced by Griffioen and

Appleton [23]. It may look simple and straightforward,

but it is indeed effective. The key point is that at least

the successors following the immediate successors are

taken into consideration. However, the drawback of this

2Switching to adjacency list representation may reduce memory space
occupation at the cost of potential computing time increase if the original
adjacency matrix turns out to be a sparse matrix.

approach is also obvious: it cannot differentiate the im-

portance of the immediate successor and its followers,

which might subsequently skew the relationship strengths

to some extend. This approach is referred to as identical
assignment for later discussions.

• Linear decremental assignment The assumption behind

this approach is that the closer the access distance in

the reference stream, the stronger the relationship. For

example, we may assign those edge weights mentioned

above in a linear decremental order, as 10 for (M1,M2),
9 for (M1,M3), 8 for (M1,M4), and so on. (The weight

in the example shown in Figure 7(a) and Figure 7(b)

is calculated this way.) This approach is referred to as

decremental assignment in the rest of this paper.

• Polynomial decremental assignment Another possibility

is that, with an increase in the successor distance, the

decrease in the relationship strength might be more

radical than the linear one. For example, polynomial

decremental assignment is a possible alternative solution.

This assumption is based on the observation of the

attenuation of radiation in the air in real life.

• Exponential decremental assignment The attenuation of

edge weights might be even faster than polynomial decre-

mental. In this case, an exponential decrement model

is adopted. This approach is referred to as exponential
decremental assignment in the future.

To find out which assignment method can best reflect

the locality strength in the metadata reference streams, we

conducted experiments on the HP file server trace [14] to

compare the hit rate achieved by those four edge-weight

assignment methods. To be comprehensive, these experiments

are conducted with different configurations in three dimen-

sions: cache size, number of successors to look ahead (or

history window size), and number of successors to prefetch as

a group (or prefetching group size). In our experiments, the

cache size (as a fraction of total metadata workset size) varies

from 10% to 90% in an ascending step of 20%. We found that

the effects of prefetching become negligible once the cache

size exceeds 50%. Accordingly, in this paper, we only present

the results with cache size of 10%, 30% and 50%. In addition,

we also observe that the results for the polynomial assignment

is very close to those for the exponential assignment, so we

remove the former results to show readers a clearer figure.

The results for the remaining three approaches are shown in

Figure 8.

In Figure 8, the 3D graphs on the left show the hit rate

achieved by those three approaches over three different cache

size configurations (i.e. 10%, 30% and 50%) with both the

look-ahead history window size and prefetching group size

varying from 1 to 5. (The values are carefully chosen in

order to be representative while non-exhaustive.) The three

2D graphs on the right show the corresponding planform (a

X-Y plane looking downward along the Z axis) of the same

measurements. These 2D graphs clearly show that the linear

decremental assignment approach takes the lead most of the

time. We also notice that the identical assignment beats others

in some cases even though this approach is very simple.
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(a) Cache size = 10%

(b) Cache size = 30%

(c) Cache size = 50%

Fig. 8. Edge weight assignment approaches comparison

Since the linear decremental assignment approach consistently

outperforms others, in the future experiments, we will deploy

this approach as our edge-weight-assignment scheme.

2) How far to look ahead and how many to prefetch:
To fully exploit the benefit of bulk prefetching, we need

to decide the distance to look ahead and the bulk size to

prefetch. Looking ahead too far may compromise the algo-

rithm’s effectiveness by introducing noise to the relationship

graph; and prefetching too much may result in a lot of

inaccurate prefetching, possible cache pollution, and cause

performance degradation. We compare the average response

time by performing a number of experiments on a combination

of these two key parameters, i.e., look-ahead history window

size and prefetching group size. In these experiments we adopt

the same simulation framework described in Section V-B. The

result is shown in Figure 9. From Figure 9, we found that

looking ahead 5 successive files’ metadata and prefetching 2

files’ metadata at a time turned out to be the best combination.

The results also seem to suggest that the larger the look-ahead

history window size, the better the hit rate achieved. This

observation prompts us to experiment on much larger look-

ahead history window, with sizes 10, 50, and 100 respectively,

and found contradicting results to our conjecture: none of

those three look-ahead history window size configurations

achieves a better hit rate than the windows size of 5. The

reason is that looking too far ahead might overwhelm the

prefetching algorithm by introducing too much noise–those

irrelevant future accesses are also taken into consideration

as successors, reducing the effectiveness of the relationships

captured by the look-ahead history window.

In the rest of the paper’s experiments, the look-ahead

distance and the prefetching group size are fixed to 5 and

2 respectively for best performance gains. In addition, since a

cache size as small as 10% is good enough to demonstrate this

performance gain, we will use this as the default configuration

unless otherwise specified.

3) Server-oriented grouping vs. client-oriented grouping:
One way to improve the effectiveness of the metadata relation-

ship graph is to enforce better locality. Since multiple client

nodes may access any given metadata server simultaneously,

most likely request streams from different clients will be

interleaved, making the pattern more difficult to observe. Thus

it may be a good idea to differentiate the different clients

when building the relationship graph. Thus there are two

different approaches to build the relationship graph on the

metadata servers: 1) Build a single relationship graph for

all the requests received by a particular metadata server; or

2) Build a relationship graph for requests originated from

each individual client and received by a particular metadata

server. In this paper, we refer to the former version as server-

oriented access grouping, and the latter as client-oriented

access grouping.

We have developed a client-oriented grouping algorithm and

compared it with the server-oriented grouping by running them

on the HP traces, as shown in Figure 10.

Figure 10 clearly shows that client-oriented grouping algo-

rithm consistently outperforms the server-oriented one. Thus

we adopt the client-oriented grouping algorithm whenever

possible.

4) Weights overflow issue: As the edge weights in the

relationship graph are monotonically non-decreasing, over

time integer overflow is going to happen sooner or later.

One possible solution to this problem is using some forms

of “big Integer” library that represents integers of arbitrary

size. For example, here is one such library [35]. However,

those libraries may introduce some unexpected overhead due

to the increasing size of data.

Another way to address overflow problem is to re-calculate

all the weights when one or more of them are going to be

overflowed. Our purpose is to avoid integer overflow while

keeping the order of the weights (do not want to change the

priorities of the vertices connected to this vertex). An example

shown in Figure 11 illustrates this idea.

In Figure 11, weight of edge (i,j) means the quantified

relationship from vertex i to j. If data overflow is detected

when edge (i, j) is being renewed, the weights of all the edges

starting from vertex i are simply re-calculated as shown in

the right part of Figure 11. Since it is easy to enumerate

the edges originated from vertex i (no matter adjacent matrix

or list is used), we can re-assign new weights from 0 to N-1

(assume N is the number of edges whose start point is vertex

i) to the edges while make sure the original weight ordering

is not changed. In Figure 11, there are 5 edges E1 ∼ E5
in original graph, the order is E1 > E2 > E5 > E3 > E4,
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(a) Cache Size = 10% (b) Cache Size = 30% (c) Cache Size = 50%

Fig. 9. Sensitivity Study: Look Ahead and Prefetch

Fig. 10. Server-Oriented Grouping VS Client-Oriented Grouping

i jE1:65532

E2:65014

E5:46231
E4:2340

E3:31374

Overflow
is detected

i jE1:4

E2:3

E5:2
E4:0

E3:1

Fig. 11. One way to solve the integer overflow problem

which is also kept in the re-calculated graph. Although the

new weights are way less stronger than the old ones (for

example, in the left part of Figure 11, even if the weights

of E5 is added multiply times, it still can not exceed the

priority of E2. While in the right part of Figure 11, a single

addition to the weight of E5 will change the ordering of

prefetching), they can still guarantee the right order for the

immediate succeeding prefetching. In other words, we reset the

priorities of prefetching candidates for metadata i to solve the

integer overflow problem, by partially sacrificing the formerly

accumulated accuracy of weights order. The time complexity

of this operation is O(nlog(n)), which is the optimized sorting

time.

For the sake of simplicity, normal integers (without over-

flow) are used in the proof and experiments.

V. EVALUATION METHODOLOGY AND RESULTS

This section describes the workload, the simulation frame-

work, and the detailed simulation we used to evaluate the

metadata performance equipped with Nexus. The metrics we

TABLE III

LIST OF OPERATIONS OBTAINED BY strace IN LLNL TRACE COLLECTION

Name Count Description
access 16 check user’s access permissions
close 111,215 close a file descriptor

fstat64 81,663 retrieve file status
ftruncate64 198 truncate a file to a specified length

open 327,990 open or create a file
stat64 59,892 display file status
statfs 980 display file system status
unlink 8 delete a name and possibly the file it refers

to

used here include hit rate and average response time. In

addition, we also studied the impact of consistency control

and scalability of Nexus algorithm.

A. Workloads

We evaluate our design by running trace-driven simulations

over one scientific computing trace and one file server trace:

the LLNL trace collected at Lawrence Livermore National

Laboratory in July 2003 [36] and the HP-UX server file system

trace collected at the University of California Berkeley in

December 2000 [37]. These traces gather I/O events of both

file data and metadata. In our simulations, we filter out the file

data activities and feed only metadata events to our simulator.

1) LLNL trace: One of the main reasons for petabyte-scale

storage systems is the need to accommodate scientific appli-

cations that are increasingly demanding on I/O and storage

capacities and capabilities. As a result, some of the best traces

to evaluate our prefetching algorithm are those generated by

scientific applications. To the best of our knowledge, the only

recent scientific application trace publicly available for large

clusters is the LLNL 2003 file system trace. It was obtained in

the Lustre Lite [1] parallel file system on a large Linux cluster

with more than 800 dual-processor nodes. It consists of 6403

trace files with a total of 46, 537, 033 I/O events. Since the

LLNL trace is collected at the file system level, any requests

not related to metadata operations, such as read, write and

execution, are filtered out. Table III manifests the remaining

metadata operations in the LLNL trace. These metadata oper-

ations are further classified into two categories: metadata read

and metadata write before fed into the simulations discussed in

Section V-B and Section V-C. Operations such as access, and
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stat fall into the metadata read group, while ftruncate64 and

unlink belong to the metadata write group since they need to

modify the attributes of the file. However, the classification of

open and close is not straight forward. An open operation

cannot be simply classified as metadata read since it may

create files according to its semantics in UNIX. Similarly, a

close operation can be classified into both groups since it may

or may not incur metadata update operations, depending on

whether the file attributes are dirty or not. For open requests,

the situation is easier since we can look at the parameter

and return value of the system call to determine its type. For

example, if the parameter is O RDONLY and the return value

is a positive number, then we know for sure that this is a

metadata read operation. For close, an eclectic way is that we

can always treat it as a metadata write assuming that the last
modify time field is always updated upon file closure.

2) HP trace: To provide a more comprehensive compari-

son, we also conduct our simulations on the HP trace [37],

a 10-day trace of file system collected on a time-sharing

server with a total of 500 GB storage capacity and 236 users.

Since these traces are relatively old, we scale up the workload

collected in this environment to better emulate the projected

more intensive workload in a petabyte storage system. We

divide each daily trace collected from 8:00am to 16:00pm,

which were usually the busiest period during a day, into four

fragments, with each fragment containing two hours of I/O

accesses. The time stamps of all events in each fragment

are then equally shifted so that this fragment starts at time

instant zero. Replaying multiple time-shifted fragments simul-

taneously increases the I/O arrival rate while keeping a similar

histogram of file system calls. In addition, the number of files

stored and the number of files actively visited were scaled up

proportionally by adding the date fragment number as a prefix

to all filenames. We believe that replaying a large number of

processed fragments together can emulate the workload of a

larger cluster without inadequately break the original access

patterns at the file system level. Same as what we did for the

LLNL trace, we also filtered out those metadata-irrelevant I/O

operations in our simulations.

B. Simulation framework

A simulation framework was developed to simulate a clus-

tered MDS based storage system with the ability to adopt

flexible caching/prefetching algorithms. The simulated system

consists of 1000 to 8000 compute nodes (clients) and 4 to

256 MDSs. The memory size is set to be 4 GB per MDS and

1 GB per client. All nodes are connected using high speed

interconnection with an average network delay of 0.3 ms and a

bandwidth of 1 Gbit/sec under assumption of a standard Giga-

bit Ethernet environment [38]. The interconnect configuration

is the same as shown in Figure 1. In such a large, hierarchical,

distributed storage system, metadata consistency control on

metadata servers as well as the clients becomes a prominent

problem for the designers. However, the focus of our current

study is the design and evaluation of a novel prefetching

algorithm for metadata. To simplify our simulation design,

cooperative caching [39], a widely used hierarchical cache

design, together with its cache coherence control mechanism,

i.e. write-invalidate [40], is adopted on the metadata servers in

our simulation framework to cope with the consistency issue.

The specific cooperative caching algorithm we adopted is N-

chance Forwarding, the most advanced solution according to

the results presented in [39]. We choose the best cooperative

caching solution available for the sake of fair performance

comparison. This aims to evaluate the real performance gain

from Nexus. From this aspect, it also helps to distinguish the

effect of Nexus from that of cooperative caching.
It may also be noticed that the choice of cooperative caching

is pragmatic for its relative maturity and simplicity and, as

such, it does not necessarily imply that it is the only or best

choice for consistency control.
In our simulation framework, the storage system consists of

four layers: 1) client local cache, 2) metadata server memory,

3) cooperative cache, and 4) hard disks. When the system

receives a metadata request, it first checks its local cache; upon

an cache miss, the client sends the request to the corresponding

MDS; if the MDS also sees a miss, the MDS looks up the

cooperative cache as a last resort before sending the request

to disks.
Thus the overall cache hit rate includes three components:

client local hit, metadata server memory hit, and cooperative

cache hit. Obviously, local hit rate directly reflects the effec-

tiveness of the prefetching algorithm because grouping and

prefetching are done on the client site.
If, in the best case, a metadata request is satisfied by the

client local cache, referred to as a local hit, the response

time for that request is estimated as local main memory

access latency. Otherwise, if that request is sent to a MDS

and satisfied by the server cache, also known as a server
memory hit, the overhead of network delay is included in the

response time. In an even worse case, the server cache does

not contain the requested metadata while the cooperative cache

does, defined as a remote client hit, extra network delay should

be considered. In the worst case, when the MDS has to send

the request to the disks where the requested metadata resides,

i.e., a final cache miss, costly disk access overhead will also

contribute to the response time.
Prefetching happens when a client sees a local cache miss.

In this case the client sends a metadata prefetching request to

the corresponding MDS. Upon arrival of that request at the

metadata server, the requested metadata along with the entire

prefetching group is retrieved by the MDS from its server

cache, cooperative cache or hard disk.

C. Trace-driven simulations
Trace-driven simulations based on aforementioned HP trace

and LLNL trace were conducted to compare different caching-

prefetching algorithms, including conventional caching al-

gorithms such as LRU (Least Recently Used), LFU (Least

Frequently Used) and MRU (Most Recently Used), primitive

prefetching algorithms such as First Successor and Last Suc-

cessor, and state of the art prefetching algorithms such as Noah

(Stable Successor), Recent Popularity (also known as Best j-

out-of-k), and Probability-Graph Based prefetching (referred

to as PG in the rest of this paper).
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Fig. 12. HP trace hit rate comparison

Fig. 13. LLNL trace hit rate comparison

(a) 16 Servers (b) 32 Servers (c) 64 Servers

Fig. 14. Comparisons of HP Average Response Time per Metadata Request

(a) 16 Servers (b) 32 Servers (c) 64 Servers

Fig. 15. Comparisons of LLNL Average Response Time per Metadata Request

Most previous studies use only prediction accuracy to evaluate the prefetching effectiveness. However, this measure-
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ment is neither adequate nor sufficient. The ultimate goal

of prefetching is to reduce the average response time by

absorbing I/O requests before they reach disks. A higher

prediction accuracy does not necessarily indicate a higher

hit rate nor a lower average response time. The reason is, a

conservative prefetching scheme, even with a high prefetching

accuracy, might incur little prefetching actions and thus not as

beneficial. So, in our experiments, we not only measure the

cache hit rate, but also the average response time by integrating

a golden disk simulator, DiskSim 3.0 [41], into our simulation

framework.
We conduct experiments for all the caching/prefetching

algorithms mentioned above. For a clear graphic presentation,

we remove the results for less representative algorithms,

including LFU, MRU (these two are always worse than LRU),

First Successor, Last Successor, Noah, and Recent Popularity,

since these algorithms are consistently inferior to PG accord-

ing to our experimental results and a similar observation made

by Pâris in [42]. In addition to these algorithms, Optimal

Caching [43], referred to as OPT in the rest of this paper, is

simulated as an ideal offline caching algorithm for theoretical

comparison purpose. In OPT, the item to be replaced is

always the farthest in the future access sequence. Since the

prefetching group size for Nexus is set to 2, we have tried

both 1 and 2 for this parameter on PG, referred to as PG1

and PG2, respectively, in order to provide a fair comparison.

In sum, in this paper we will present the results for five

caching/prefetching algorithms including Nexus, PG1, PG2,

LRU and OPT.

D. Hit rate Comparison
We have collected the hit rate results for all three levels of

caches: client cache, server cache and cooperative cache, as

well as the percentage of misses that goes to the server disk,

referring to the explanation in V-B.
Figure 12 and Figure 13 show the hit rate comparison results

collected on HP trace and LLNL trace, respectively.
Comparing Figure 12(a), 12(b) and 12(c), it is apparent that

with more clients, and thus larger cooperative cache size and

smaller per-client server cache size, many requests previously

satisfied by the server cache is now caught by the cooperative

cache. However, the client local cache hit rate and the overall

cache hit rate stay relatively consistent.
In both Figure 12 and Figure 13, Nexus achieves noticeable

better performance on the client local cache hit rate than the

other four competitors. For example, Nexus can achieve up

to 40% higher local hit rate than that of LRU and PG1. In

addition, the fact that PG2 obtains consistent higher client

local cache hit rate than PG1 is another implication that

advocates the general idea of group prefetching. Based on

this reasoning, it seems that a projected PG3 algorithm may

potentially outperform PG2 significantly, but its exponential

computational complexity prohibited us from further exploring

in this direction. It is worth reminding that, Nexus only incurs

linear or polynomial computational overhead and thus suits

well for group prefetching.
It is surprising to see that Nexus even beats Opt by a small

margin ( around 3∼10% ) in terms of local hit rate, given Opt

being the optimal offline caching algorithm with an unrealistic

advantage to actually “see” future request sequence before

making cache replacement decisions. The only limitation of

Opt is the lack of prefetching capability compared with Nexus.

Consider the situation where object A, B, C and D are always

accessed as a group but none of them are currently in the

cache, Opt bears four cache misses. However, Nexus will

prefetch B, C and D upon a cache miss for A, resulting in

one cache miss and three hits.

It may also be worth mentioning that even though Nexus

achieves the highest client local cache hit rate, its advantage

on overall hit rate is somewhat offset by server cache and

cooperative cache. On the other hand, this observation con-

firms that even the best cooperative caching scheme cannot

replace Nexus. At any rate, the overall hit rate does not fully

and truly show the merits of Nexus prefetching algorithm.

Instead, it is the client cache hit rate that may exhibit the

benefits of Nexus. More importantly, even server cache hit

and cooperative cache hit come at the cost of network delay

in the range of milliseconds, considerably slower than a local

hit which incurs only memory access latency in the range of

nanoseconds.

E. Average Response Time Comparison

Taking into consideration the possibility that the advantage

of prefetching be compromised if too many extra disk accesses

are introduced, to accurately measure average response time,

we adopted an established disk simulator to incorporate the

disk access time in our simulation. The procedure of how each

single request is serviced is given detailed explanations in V-B.

In the experiments, We collect the results for both HP trace

and LLNL trace and present their results in Figure 14 and

Figure 15, respectively.

Apparently, the Nexus algorithm excels in all cases in

Figure 14(a) and Figure 15(a). With 16 servers, increasing

the number of clients from 1000, 2000 to 3000 results in con-

siderable longer average response time for all algorithms. In

contrast, with 32 servers, the average response time for Nexus

in Figure 14(b) and that of Nexus and Opt in Figure 15(b) stays

nearly constant while others increase significantly. Further-

more, in Figure 14(c) and Figure 15(c), the average response

time for all algorithms seems to stay little changed. Based on

these observations, it seems that individual algorithms exhibit

different degrees of “sensitivity” to increasingly intensive

workloads. More specifically, systems running the Nexus or

Opt algorithm are less likely to be saturated under the same

workload.

The advantage of Nexus comes from two aspects. First of

all, as shown in Figure 12 and Figure 13, the local hit rate and

overall hit rate of Nexus are higher than the others. In addition,

the computational overhead of this algorithm is kept minimal.

Given these advantages, even in cases where the workload

stress is relatively high (see Figure 14(a) and Figure 15(a)),

Nexus shows a moderate increase in average response time,

in contrast to the much more dramatic increase exhibited by

other algorithms.
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Fig. 16. Impact of consistency control

F. Impact of consistency control

The study on the impact of consistency control on the

algorithm is also carried out on the HP trace and the LLNL

trace. As the results for LLNL trace and HP trace are similar,

here we only show the average response time comparison

results collected on the HP trace, as in Figure 16.

These results indicate that the average response time was not

noticeably affected by the consistency control, within a range

of only 5∼10%. In other words, consistency control does not

entangle Nexus very much. A possible explanation is that the

characteristic of the metadata workloads in this application are

either read-only or write-once. In a write intensive workload,

the impact of consistency control may become more notice-

able. Regarding to the applicability of Nexus in a practical

system, similar to other prefetching/caching algorithms, our

scheme works better for read dominant applications than write

dominant applications in order to avoid excessive overhead

incurred by the consistent control policy.

G. Scalability study

In a multi-client multi-MDS storage environment, the sys-

tem scalability is an important factor directly related to the

aggregated system performance. We studied the scalability

of the metadata servers equipped with Nexus prefetching

algorithm by simulating large numbers of clients and servers.

Our evaluation methodology is that keeping constant number

of metadata servers, we increase the number of clients and

measured the corresponding system throughput, defined by

the aggregate number of metadata I/Os serviced per second

by the metadata servers. The results in Figure 17 show that,

given 4 servers, the throughput does not significantly increase

while the number of clients increase from 1000 to 8000, as

the system is already saturated by 1000 clients at the first

place. Prefetching simply can not help when the system is

overloaded. In the 16-server case, the throughput increases

approximately 6% when the number of clients increase from

1000 to 2000, after that it stops growing since the sys-

tem became saturated. With 64 or 256 servers, the system

throughput scales up almost proportionally with the number

of clients, indicating near optimal scalability of the system.

As an example, in the 256-server case, the throughput grows

from about 6.5 × 104 I/O per second with 1000 clients to

Fig. 17. Scalability study using HP trace

about 4.1× 105 with 8000 clients, more than 6 times increase

is achieved.

There are three major factors that contributes to its scala-

bility. First, Nexus algorithm is totally distributed to clients

nodes, there is no central control in our design. System

scalability is given serious consideration at the time of Nexus

algorithm design. Second, Nexus algorithm runs on client

site. That means increased number of clients also provide

additional computation power for this algorithm. Third, there

is no inter-client communication involved, eradicating the most

prominent factor that limits the scalability in many distributed

systems.

VI. CONCLUSIONS

We introduced Nexus, a novel weighted-graph-based

prefetching algorithm specifically designed for clustered meta-

data servers. Aiming at the emerging MDS-cluster-based stor-

age system architecture and exploiting the characteristic of

metadata access, our prefetching algorithm distinguishes itself

in the following aspects.

• Nexus exploits the ability to look ahead farther than the

immediate successor to make wiser predictions. Sensitiv-

ity study shows that the best performance gain is achieved

when the look-ahead history window size is set to 5.

• Based on the wiser prediction decision, aggressive

prefetching is adopted in our Nexus prefetching algorithm

to take advantage of the relatively small metadata size.

Our study shows that prefetching 2 as a group upon each

cache miss is optimal under the two particular traces

studied. Conservative prefetching lose the chance to max-

imize the advantage of prefetching, and too aggressive

but not so accurate prefetching might hurt the overall

performance by introducing extra burden to the disk and

polluting the cache.

• The relationship strengths of the successors are differ-

entiated in our relationship graph by assigning variant

edge weights. Four approaches for edge weight assign-

ment were studied in our sensitivity study. The results

show that the linear decremental assignment approach

represents the most accurate strength for the relationships.

• In addition to server-oriented grouping, we also explored

client-oriented grouping as a way to capture better meta-

data access locality by differentiating between the sources
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of the metadata requests. Sensitivity study results show

the latter approach’s consistent performance gain over the

former approach, confirming our assumption.

Other than focusing on the prefetching accuracy — an

indirect performance measurement, we pay our attentions to

the more direct performance goal — cache hit rate improve-

ment and average response time reduction. Simulation results

show remarkable performance gains on both hit rate and

average response time over conventional and state of the art

caching/prefetching algorithms.
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