

In the Proceedings of 2003 International Conference on Parallel Processing Workshops (ICPP 2003 Workshops)

A Dynamic Load Balancing Scheme for I/O-Intensive
Applications in Distributed Systems

Xiao Qin Hong Jiang Yifeng Zhu David R. Swanson

Department of Computer Science and Engineering
University of Nebraska-Lincoln

Lincoln, NE 68588-0115, {xqin, jiang, yzhu, dswanson}@cse.unl.edu

Abstract

In this paper, a new I/O-aware load-balancing scheme
is presented to improve overall performance of a
distributed system with a general and practical workload
including I/O activities. The proposed scheme
dynamically detects I/O load imbalance on nodes of a
distributed system and determines whether to migrate the
I/O requests of some jobs from overloaded nodes to other
less- or under-loaded nodes, depending on data migration
cost and remote I/O access overhead. Besides balancing
I/O load, the scheme judiciously takes into account both
CPU and memory load sharing in distributed systems,
thereby maintaining the same level of performance as the
existing schemes when I/O load is low or well balanced.
Results from a trace-driven simulation study show that,
compared with the existing schemes that only consider
CPU and memory, the proposed scheme reduces the mean
slowdown by up to 54.5% (with an average of 39.9%). On
the other hand, when compared to the existing
approaches that only consider I/O, the proposed scheme
reduces the mean slowdown by up to 57.2% (with an
average of 31.6%). More importantly, the new scheme
improves over a very recent algorithm found in the
literature that considers all the three resources by up to
49.6% (with an average of up to 41.9%).

1. Introduction

In distributed environments, such as a network of
workstations and clusters of SMPs, dynamic load
balancing schemes can improve system performance by
attempting to assign work, at run time, to machines with
idle or under-utilized resources. Figure 1 illustrates the
architecture of a distributed system considered in this
study, in which each node has a combination of multiple
types of resources, such as CPU, memory, network
connectivity and disks. In this architecture, nodes may or
may not be homogeneous and each node is assumed to be
capable of migrating a newly arrived job to another node
if needed, and maintains a reasonably up-to-date global

load information by periodically exchanging load status
with other nodes.

Several distributed load-balancing schemes, based on

the above architecture, have been presented in the
literature, mainly considering CPU [11][12], memory
[1][17], or a combination of CPU and memory [6][18]
[19]. While these load-balancing policies have been by
and large very effective in increasing the utilization of
resources in distributed systems, they have ignored one
type of resource, namely disk (and disk I/O). The impact
of disk I/O on overall system performance is becoming
increasingly significant as more and more data-intensive
and/or I/O-intensive applications are running on
distributed systems. This makes storage devices a likely
performance bottleneck. Therefore, we believe that for
any dynamic load balancing scheme to be effective in this
new application environment, it must be made “ I/O-
aware” . Typical examples of I/O-intensive applications
include long running simulations of time-dependent
phenomena that periodically generate snapshots of their
state [16], archiving of raw and processed remote sensing
data [4][8], multimedia and web-based applications, to
name just a few. These applications share a common
feature in that their storage and computational
requirements are extremely high. Therefore, the high
performance of I/O-intensive applications depends
heavily on the effective usage of global storage, in

Figure 1. Architecture of a distributed system

 High Bandwidth network

Disk 1

 Machine1

Job

 Machine2

Job

 Machine N

Job

Disk 2 Disk N

addition to that of CPU and memory. Compounding the
performance impact of I/O in general, and disk I/O in
particular, there is the steadily widening of speed gap
between CPU and I/O, making the load imbalance in I/O
increasingly more sensitive to overall system
performance. To bridge this gap, I/O buffers allocated in
the main memory have been successfully used to reduce
disk I/O costs, thus improving the throughput of I/O
systems. In this regard, load balancing with I/O-
awareness, when appropriately designed, is potentially
capable of boosting the utilization of the I/O buffer in
each node, which in turn increases the buffer hit rate and
decreases disk I/O access frequency.

This paper attempts to comprehensively study an
approach, referred to as IOCM (load balancing for I/O,
CPU, and Memory), to balance a distributed environment
in such a way that CPU, memory, and I/O resources at
each node can be simultaneously well utilized. The
experimental results indicate that, compared with existing
load balancing schemes that only consider CPU and
memory, IOCM reduces the mean slowdown, informally
defined to be the performance degradation of a job due to
resource sharing by other jobs [18][19], by up to 54.5%.
Compared with existing approach that solely considers
I/O, the IOCM scheme reduces the mean slowdown by up
to 57.2%. More importantly, IOCM improves the
slowdown performance over the scheme found in the
literature that also considers all three resources by an
average of up to 49.6%.

The rest of the paper is organized as follows. In the
section that follows, related work in the literature is
briefly reviewed. In Section 3, we describe the IOCM
scheme. Section 4 evaluates the performance of the IOCM
scheme, and compares it with that of other existing
solutions. Finally, Section 5 concludes the paper by
summarizing the main contributions of this paper.

2. Related work

The issue of distributed load balancing for CPU and

memory resources has been extensively studied in the
literature in recent years. Harchol-Balter et al. [11]
address the question of whether preemptive migration is
necessary for CPU-based load balancing in networks of
workstations. Zhang et al. [6][19] focus on load sharing
policies that consider both CPU and memory services
among the nodes. In what follows, the CPU-memory-
based load-balancing policy presented in [19] will be
referred to as the CM policy. The experimental results
show that CM not only improves performance of
memory-intensive jobs, but also maintains the same load
sharing quality of the CPU-based policies for CPU-
intensive jobs [6][19].

A large body of work can be found in the literature that
addresses the issue of balancing the load of disk systems

[2][13][14]. Scheuermann et al. [14] study two issues in
parallel disk systems, namely striping and load balancing,
and show their relationship to response time and
throughput. Lee et al. [13] propose two file assignment
algorithms that minimize the variance of the service time
at each disk, in addition to balancing the load across all
disks. Aerts et al. [2] use randomization and data
redundancy to enable effective load balancing. Since the
problem of balancing the utilizations across all disks is
isomorphic to multiprocessor scheduling problem [9], a
greedy multiprocessor-scheduling algorithm, LPT [10],
can be applied to disk load balancing [13]. Thus, LPT
greedily assigns a process to the processor with the
lightest I/O load [13]. Throughout this paper, we refer the
approaches that directly apply LPT to the I/O load
balancing as the IO (IO-based) policy. The I/O load
balancing policies in these studies have been shown to be
effective in improving overall system performance by
fully utilizing the available hard drives. However, not all
of them can be directly applied for a complex distributed
environment where I/O-intensive jobs may share
resources with many other memory-intensive and CPU-
intensive jobs.

Communication-sensitive load balancing, a kind of I/O-
aware load balancing, has been proposed by Cruz and
Park [7]. Compared with their work, the proposed
approach in this study focuses on another kind of I/O,
namely disk I/O. While the IOCM approach takes into
account the communication load as a measure to
determine the migration cost, balancing the network load,
however, is beyond the scope of this paper.

Very recently, two load balancing models, which
consider I/O, CPU and memory resources, have been
presented [15][18]. In [15], a dynamic load-balancing
scheme, tailored for the specific requirements of the
Question/Answer application, is proposed along with a
performance analysis of the approach. One of the load-
balancing policies presented in [18] considers the three
types of resources, and results show that the policy
improves overall job execution performance. The two
policies proposed in [15][18] are similar in the sense that,
for every node, the average load is defined as the
weighted average of the required resource load.
Throughout this paper, these two load-balancing policies
are referred to as the WAL (Weighted Average Load)
policy. In WAL, remote I/O accesses are prohibited, thus
computation and I/O portions of a job have to be always
allocated to the same node. In contrast, the IOCM scheme
in this study allows a job’s I/O operations to be conducted
by a node that is different from the one in which the job’s
computation is assigned, thereby permitting a job to
access remote I/O. The trace-driven simulations show
that, compared with the IO, CM, and WAL policies, our
IOCM scheme significantly enhances the overall
performance of a distributed system under workload with

a mixture of CPU-memory-intensive and I/O-intensive
jobs.

3. IO-CPU-Memory based load balancing

In this section, we present an IO-CPU-Memory based

load balancing (IOCM) for a distributed system. Each job
is described by its requirements for I/O, CPU and
memory. Jobs with intensive I/O requests can be regarded
as having two sub-tasks, namely, computaiontal task
along with the CPU and memory demands, and I/O task
associated with I/O requirement. Due to the partitioning
of computational and I/O tasks in each job, the IOCM
scheme allows the two tasks to be assigned to different
nodes in order to balance load. Consequently, the
computational tasks are assigned to nodes based on the
jobs’ CPU/memory load status, whereas I/O tasks are
assigned according to the jobs’ I/O load status.

The IOCM scheme attempts to balance the system in
such a way that:

(1) I/O usages of all nodes in the system are balanced
with best effort;

(2) CPU and memory resources are balanced with best
effort; and

(3) Cost in network traffic due to remote I/O access is
maintained under a certain level (threshold).

It has been observed that finding the optimal solution,
even for relatively simple formulations of this problem, is
an NP-hard problem [5]. Consequently, our approach to
solve the dynamic load-balancing problem is heuristic and
greedy in nature.

Throughout this paper, let i represent node i, and let j
denote job j. For a job j, arriving in a local node i, the
IOCM scheme attempts to balance three different
resources simultaneously following four main steps. First,
the candidate node, MIO(j), that processes the I/O
operations issued by the job, is chosen in accordance with
the I/O load status. Second, IOCM judiciously determines
another candidate node, MCM(j), the one with the lightest
CPU/memory load, to execute the job. Third, if the
network load between nodes MIO(j) and MCM(j) is
overloaded, IOCM avoids the job’s remote I/O accesses
by assigning its computational task to the same node as
the I/O task, thereby making the I/O accesses local.
Fourth, data migration from node i to MIO(j) is invoked if
the data that will be accessed by job j is not initially
available in node MIO(j). Finally, the network load and the
load status in nodes MIO(j) and MCM(j) are updated.

The detailed pseudo code of the IOCM scheme is
presented in Figure 2.

 In this scheme, three load indices are applied to
measure the workload of CPU, memory and I/O, which
are described below:

(1) The CPU load index of node i is characterized by the
length of the CPU waiting queue [18][19], denoted as

loadCPU(i). To identify whether node i’s CPU is
overloaded, as in step 2.2 of Figure 2, a CPU threshold,
denoted as CPU_threshold(i), is assigned to node i.
CPU_threshold(i) is defined in accordance with node i’s
CPU capability. Node i’s CPU is considered overloaded, if
loadCPU(i) ≥ CPU_threshold(i). In the experiments
reported in Section 4, the value of CPU threshold is kept
to four.

 (2) The memory load index of node i, denoted as

loadmem(i), is the sum of the memory space allocated to
those jobs with their computational tasks assigned to node
i. More precisely, let mem_load(j) represent the memory
load (requirement) of job j, then we have

 �

∈

=
)(

)(_)(
iCj

mem jloadmemiload , (1)

where C(i) is a set of jobs whose computational tasks are
assigned to node i.

(3) The I/O load index measures two types of I/O
accesses, namely, the implicit I/O requests induced by
page faults and the explicit I/O requests issued from jobs.
Let page_load(i, j) denote the implicit I/O load, and
IO_load(i, j) the explicit I/O load, then, the I/O load index
of node i can be defined as:

��
∪∈∈

+=
)()()(

),(_),(_)(
iRiLjiCj

IO jiloadIOjiloadpageiload , (2)

where L(i) is a set of jobs whose computational and I/O
tasks are both assigned to node i. R(i) is a set of jobs

Algorithm: IO-CPU-Memory based load balancing
(IOCM)
Input: Job j, node i, Output: MIO(j), MCM(j).
1 /* Balance I/O load * /
 if I/O load on node i is not the maximum among all nodes
 then M IO(j)← local node i;
 else MIO(j)← node with the minimal I/O load;
2 /* Balance CPU and memory load */
 2.1 if memory in node i is not overloaded then
 2.2 if CPU is not overloaded then MCM(j) ← local node i;
 else MCM(j) ← node with the minimal CPU load;
 else MCM(j) ← node with the minimal memory load;
3 /* Evaluate migration cost and remote I/O access cost */
 3.1 if MIO(j) ≠ i and migration cost > threshold
 then MIO(j)← i;
 3.2 if MIO(j) ≠ MCM(j) and network load between
 nodes MIO(j) and MCM(j) is overloaded
 then MCM(j) ← MIO(j) /*Avoided remote I/O accesses*/
4 if MIO(j) ≠ i and initial data is stored in node i then
 migrate initial data from node i to node MIO(j);
5 Update the load status in Nodes MIO(j) and MCM(j);
6 Update network load;

 Figure 2. Pseudo code of the IOCM-based load balancing

whose I/O tasks are assigned to node i while their
computational tasks are assigned to other nodes. It is
noted that L(i) is a subset of C(i), thus, L(i) ⊆ C(i).

IO_load(i, j) is proportional to I/O access rate and
inversely proportional to I/O buffer hit rate hit_rate(i, j),
which is approximated by the following expression:

hit_rate(I, j) = r/(r + 1) if buf_size(i, j) ≥ data_size(j),

)(_

),(_

1 jsizedata

jisizebuf

r

r ×
+

 otherwise, (3)

where r, the data re-access rate, is defined to be the
number of times the same data is accessed by a job,
buf_size(i, j) is the buffer size allocated to job j, and
data_size(j) is the amount of data job j retrieves from or
stored to the disk, given a buffer with infinite size.

Besides measuring the load of three resources, IOCM
estimates the data migration cost in step 3.1 and the
network load in step 3.2. In case the data migration cost is
too high, migration will not be invoked. Similarly, if the
network load is higher than a given threshold, implying a
high remote I/O access cost, remote I/O accesses will be
avoided by assigning the computational and I/O tasks into
the same node.

One efficient way to reduce data migration costs is to
duplicate data to be initially accessed by jobs across all
disks, if such data is known and available and disk
capacity is sufficient. In practice, initial data may not be
duplicated in every node, giving rise to the following
expression for data migration cost,

Tdata_mig(j) = Dinit(j)/Bnet Initial data has no replicated
 copy on the remote node,
 0 Otherwise, (4)

where Dinit(j) is the initial data size of job j, and bnet is the
available network bandwidth. It is noted that bnet is not a
fixed value, and it is dynamically updated in accordance
with the network load.

In our model, if a job’s computation and I/O tasks are
allocated to nodes i and k, respectively, the job is said to
have reserved one unit of usage of the link connecting
nodes i and k. Thus, the network load for any node pair
can be approximated by the total units of link usage
between the two nodes. In IOCM, step3.2 guarantees that
the total link usage units will not exceed to a given
threshold, denoted as net_threshold(i, k). It is noted that
the value of net_threshold(i, k) can be set based on the
bandwidth of the network link connecting with two nodes.

4. Performance evaluation

To study the performance of the I/O-aware dynamic

load-balancing scheme presented above, we have

conducted a large number of trace-driven simulations. In
this section, we compare the performance of IOCM with
three existing schemes, namely, IO, CM, and WAL. In
what follows, we give a brief description of these three
policies.

(1) IO-based load balancing (IO). The load index in this
policy represents only the I/O load, given in expression
(2). For a job arriving in node i, the IO scheme greedily
assigns the computational and I/O tasks of the job to the
node that has the least accumulated I/O load.

(2) CPU-Memory-based load balancing (CM) [19].
When a node i has sufficient memory space, the CM
scheme balances the system using CPU load index,
loadCPU(i), as defined in Section 3. When the system
encounters a large number of page faults due to
insufficient memory space for the running jobs, memory
load index, loadmem(i), given in expression (1), is used by
CM to balance the system.

(3) Weighted-Average-Load-based balancing (WAL)
[15]. For every node i, the load index defined in WAL is
the weighted average of the required resource load:

)()()(iloadWiloadWiload CPUCPUIOIO ×+×= . (5)

For a new coming job j, WAL assigns it to a node that is

not overloaded. If such node is not available, WAL
dispatches the job to a node with the smallest value of the
load index. In our experiments, both WIO and WCPU are set
to 0.5, assuming that I/O and CPU are equally important
in the workload.

The performance metric used in our simulations is
slowdown [11][19], since jobs may be delayed because of
waiting in queues or being migrated to remote nodes.
Since the definition of slowdown in [11][19] does not
consider time spent on I/O access, we extend the
definition by incorporating I/O access time. The extended
definition of slowdown for a job j is given as:

)(_)(_

)(_
)(

jtimeIOjtimeCPU

jtimewall
jslowdown

+
= , (6)

where wall_time(j) is the total time the job spends
running, accessing I/O, waiting, or migrating.

4.1 Simulator and Simulation Parameters

Before presenting the empirical results, the simulation

model and the workload are discussed.
To study dynamic load balancing, Harchol-Balter and

Downey [11] implemented a simulator of a distributed
system with six nodes, in which round-robin scheduling is
employed. The load balancing policy studied in this
simulator is CPU-based. Zhang et. al [19] extended the
simulator, incorporating memory recourses into the
simulation system. Based on the simulator, presented in

[19], our simulator incorporates the following four new
features:

(1) The IOCM, IO and WAL schemes are implemented
in the simulator;

(2) A fully connected network is simulated;
(3) A simple disk model is added into the simulator;
(4) I/O buffer, used to reduce the disk I/O access

frequency, is implemented on top of the disk model.
In all experiments, we used the simulated system with

the configuration parameters listed in Table 1. The
parameters for CPU, memory, disks, and network are
chosen in such a way that they resemble a typical cluster
of the current day.

Table 1. Data Characteristics

 Parameter Values assumed
CPU Speed 800MIPS (million

instructions/second)
RAM Size 640Mbytes
Buffer Size 160Mbytes
Network Bandwidth 1Gbps, 100Mbps,10Mbps
Page fault service time 8.1 ms
Page fault rate 0.1, 1.0, 2.0 per ms
Time slice of CPU
time sharing

10 ms

Context switch time 0.1 ms
Disk seek time and
rotation time

8.0 ms

Disk transfer rate 40 MB/s
I/O access rate Uniformly distributed between 0

and AR
AR (Maximal I/O
access rate)

0.1, 0.2, …, 2.9

Re-access rate, r 5

Disk accesses from each job are modeled as a Poisson
process with a mean arrival rate λ. The service time of
each I/O access is modeled as below:

I/O_Service_time = Seek_time + Rotational_delay
 + Ttransfer_time, (7)

rateTransfer

sizeData
timeTransfer

_

_
_ = , (8)

where Seek_time is the disk arm positioning time for disk
head move to the desired cylinder, Rotational_delay is the
time for the desired block to rotate under the disk head,
and Transfer_time is the time to read/write data in the
block. Transfer_time equals the amount of data retrieved
from or stored to the disk divided by the transfer rate. We
assume that both Seek_time and Rotational_delay are
fixed, and the transfer time for each I/O access is
computed by expression (8). Data sizes of the I/O requests
are randomly generated based on a Gamma distribution,
since the sizes chosen in this way reflect typical data
characteristics for MPEG-1 data [3], which is retrieved by

many multimedia applications. The data characteristic for
the I/O requests in our simulation is given in Table 2.

Table 2. Data Characteristics

Data Size Mean 100 KByte
Gamma Distribution Standard Deviation 50 KByte

We modified the traces used in [11][19], adding a

randomly generated I/O access rate to each job. In the
traces used in our experiments, the CPU and memory
demands remain unchanged, and the memory demand of
each job is chosen based on a Pareto distribution with the
mean size of 4Mbytes [19]. The I/O access rate for each
job is generated from a uniform distribution between 0 to
AR.

4.2 Overall Performance Comparison

In our first experiment, slowdown is measured as a

function of I/O access rate in the range between 1.0 and
1.9 No./ms with increments of 0.1 No./ms, as shown in
Figure 3, and as a function of page fault rate in the range
between 9.4 and 10.0 No./ms with increments of 0.1
No./ms, as shown in Figure 4. To show that our approach
is able to simultaneously balance three resources, the
traces in this experiment are generated with a “good-mix”
of CPU-memory-intensive and I/O-intensive jobs. In
Figure 3, the mean slowdowns of WAL are almost
identical to those of IO, and thus are omitted from the
figure.

First, both Figure 3 and Figure 4 show that mean

slowdowns of the four policies all increase with the
explicit (Fig.3) or implicit (Fig.4) I/O load. This is
because, as CPU load and memory demands are fixed,
high I/O load leads to a high utilization of disks, causing
longer waiting times on I/O processing.

Second, the results further reveal that the IOCM scheme
significantly outperforms IO, CM, and WAL, suggesting

�

���

���

���

���

� �

	
�

������������������������ � ���	����������������

CM
IO
IOCM

I/O access rate (AR) No./ms

Mean Slowdown

Figure 3. Mean slowdowns as a function of I/O
access rate, for a trace with a page fault rate of
8.125 No./ms

that IO, CM, and WAL are not suitable for the workload
with mixture of CPU-memory-intensive and I/O-intensive
jobs. For example, as shown in Figure 3, IOCM reduces
the mean slowdown by up to 54.5% (with an average of
39.9%). In Figure 4, IOCM reduces the slowdown of CM
by up to 50.4% (with an average of 34.9%), and IOCM
experiences an average decrease of 27.3% over both IO
and WAL. This is because IOCM partitions each job into
a computational task and an I/O task, and individually
improves the utilizations of three resources by allowing
the computational and I/O tasks of each job to be assigned
to different nodes.

4.3 Stress Tests for I/O load

 To stress the I/O workload, the page fault rate, in this

experiment, is fixed at a very low value of 0.5No./ms,
implying that, even when the requested memory space is
larger than the allocated memory space, page faults do not
occur frequently. This workload may happen when
memory-intensive jobs exhibit high temporal and spatial
locality of access. In Figure 5, we plot the slowdowns as a
function of I/O access rate for four policies, including a
policy that does not apply any load-balancing scheme,
denoted as NL (No Load balancing). The I/O access rate
is chosen in the range between 2.1 No./ms and 2.9 No./ms
with increments of 0.1 No./ms. Since the mean
slowdowns of WAL and IO are approximately identical,
the data for WAL is omitted from Figure 5.

As noted earlier, the mean slowdown increases with the
increase in I/O access rate. The slowdowns of NL and CM
are more sensitive to I/O access rate than IOCM, IO, and
WAL do. It is also observed from Figure 5 that, when I/O
access rate is higher than 2.3 No./ms, IOCM, IO, and
WAL consistently outperform perform CM and NL. This
is mainly because IOCM, IO, and WAL improve the
utilization of disks, which dominate the overall
performance when the explicit I/O access rate is high.
Figure 5 shows that the slowdowns of CM and NL are

very similar to each other. This result indicates that, when
the page fault rate is low, the CM scheme is unable to
improve the overall system performance any further.
More interestingly, though the slowdowns of IO and
IOCM appear to be close to each other, IOCM
outperforms IO by 9.4% on average. This is because
IOCM further reduces implicit I/O access rate by
improving the utilization of global memory, whereas IO
simply balances the I/O load without considering the
memory resources and, as a result, the implicit I/O load is
increased due to a large number of page faults.

4.4 Stress Tests for Page Fault Rate

To stress the page fault rate, the I/O access rate is fixed
at a low value of 0.1 No./ms, keeping the I/O demands at
a very low level. This workload represents the scenario
where a significant portion of applications running in a
distributed system is CPU-Memory-intensive, and there
are only a small number of I/O-intensive jobs in the
system. The results of the mean slowdown as a function
of the page fault rate are summarized in Figure 6. The
page fault rate is set from 7.2 No./ms to 8.8 No./ms with
increments of 0.2 No./ms. Since the mean slowdowns of
WAL and CM are nearly identical, the data for WAL is
omitted from Figure 6.

As can be seen in Figure 6, when page fault rate is
higher and I/O rate is very low, IOCM, CM, and WAL
outperform the IO scheme considerably, with IOCM
improving over IO by up to 32.2% (with an average of
24.8%). These results can be explained by the following
reasons. First, IOCM, CM, and WAL consider the
effective usage of global memory, attempting to balance
the implicit I/O load, which makes the most significant
contribution to the overall system load when page fault
rate is high and the explicit I/O load is low. Second, the
IO scheme improves the utilization of disks based only on
I/O load, ignoring the imbalanced memory load. Again,
Figure 6 illustrates that IOCM consistently outperforms

Figure 5. Mean slowdowns as the I/O access
rate increases on the trace with page fault
rate of 0.5 No./ms

�

���

���

���

�	�

 �

�	�

����

�����

�������������������������������������
 ����������

NL
CM
IO
IOCM

I/O access rate (AR) No./ms

Mean Slowdown

Figure 4. Mean slowdowns as a function of page
fault rate for a trace with a maximal I/O access rate
of 2.0 No./ms.

�
����
����
����
�	��
� ��
 ���
! ��
"���

#�$��%#�$ � #�$� &#�$! #$�"'#�$�# ���

CM
IO
WAL
IOCM

Number of Page Fault Per Millisecond

Mean Slowdown

WAL and CM, by up to 7.0% (with an average of 3.4%).
The reason for this phenomenon is that, besides balancing
the memory load and the implicit I/O load generated by
the page faults, IOCM further balances the explicit I/O
load measured by the I/O access rate.

4.5 Data Re-access Rate

As mentioned earlier, data re-access rate, which largely

depends on I/O access patterns, affects the overall
performance of a distributed system. Figure 7 shows the
impact of data re-access rate on the mean slowdown for
four policies. In this experiment, the page fault rate and
the maximal I/O access rate are fixed to 9.7 No./ms and
2.0 No./ms, respectively. IO and WAL are omitted from
Figure 7, since their performances are almost identical to
that of CM.

As shown in Figure 7, the mean slowdowns of all

policies decrease as the re-access rate increases. The
reason is that the high re-access rate yields a high buffer
hit rate, given in expression (3) in Section 3.
Consequently, the high buffer hit rate in a node leads to a

short I/O service time, since data is more likely to be read
from or written to the buffer instead of the disk in the
node. A second observation is that the slowdowns of CM,
IO, and WAL are much sensitive to re-access rate than
that of IOCM, and the improvement of IOCM over three
policies decreases with the increasing value of re-access
rate. This result suggests that the performance gain by
IOCM over three existing policies becomes more
pronounced when the re-access rate is low.

4.6 Network Bandwidth

It is expected that network bandwidth is one of the main

factors that affect the overall performance of a distributed
system. Figure 8 shows the impact of network bandwidth
on the mean slowdowns of the four policies. Again, the
page fault rate and the maximal I/O access rate in this
experiment are fixed at 9.7 No./ms and 2.0 No./ms,
respectively. Since the slowdowns of IO and WAL are
almost identical, the performance of WAL is not depicted
in Figure 8.

Four polices share a common feature in the sense that,

when the network bandwidth increases, the slowdown
drops. The reason is that a network with high bandwidth
results in a low migration cost in four load-balancing
policies. Fig. 8 also reveals that IOCM is much sensitive
to the network bandwidth than the other three policies.
This result can be explained by the fact that, in addition to
decreasing migration cost, the high bandwidth network in
IOCM also helps in reducing remote I/O access cost,
which may dominate the communication cost when the
explicit I/O load in distributed system is high. It is
suggested from this experiment that a fast network, such
as Myrinet, is strongly recommended for the distributed
system that applies the IOCM scheme as a load-balancing
policy.

Figure 8. Mean slowdowns as a function of the
network band-width for traces with a I/O access rate
of 2.0 No./ms and page fault rate of 9.7No./ms

�
� �
�����
� � �
�����
� � �
�����
� � �
�	���
� � �

��� ����� � ��� �����	� �����
�

CM

IO
IOCM

Network Bandwidth (Mbps)

Mean Slowdown

Figure 7. Mean slowdowns as a function of the re-
access rate for traces with a maximal I/O access
rate of 2.0 No./ms and page fault rate of 9.7No./ms

�

��	�

�
�	�

�
�	�

���	�

� �	�

� � � � � � ���

CM

IOCM

Re-access Rate

Mean Slowdown

Figure 6. Mean slowdowns as the page fault
rate increases on the trace with the maximal I/O
access rate of 0.1No./ms

�

��

�
�

�
�

���

� �

�	�

��� � � � � ��� � � �"! !#!$� � ! � � !$� � !��
!

CM

IO

IOCM

Number of Page Fault Per Millisecond

Mean Slowdown

5. Conclusions

In this paper, we have studied a dynamic load balancing

policy, referred to as IOCM (load balancing for I/O, CPU,
and Memory), for distributed systems executing
applications that represent general and practical workload
including intensive I/O activities. IOCM considers I/O
load, in addition to CPU and memory utilizations. To
evaluate the performance of IOCM, we compare it with
three existing approaches, namely, (1) CPU-Memory-
based policy (CM), (2) IO-based policy (IO), and (3)
Weighted-Average-load based policy (WAL). IOCM is
more general than the existing approaches, and able to
maintain a high performance under a diversity of
workload conditions. A trace-driven simulation provides
us with extensive empirical results to draw several
conclusions:

(1) When both memory and I/O demands are high, the
performance of IOCM is significantly superior to that of
any of the three existing approaches;

(2) Under workload conditions where the I/O load is
high and the memory load is low, IO and WAL
outperform CM, while IOCM further improves over WAL
and IO by up to 14.7%;

(3) When the I/O load is low and the memory load is
high, CM and WAL are better than IO, while CM and
WAL are outperformed by IOCM;

(4) Data re-access rate affects the performance. A high
re-access rate yields a high buffer hit rate, which in turn
implies a short I/O service time. Interestingly, the
improvement of IOCM over other policies is more
significant when the data re-access rate is relatively low.

(5) Network bandwidth plays an important role in the
overall performance, since high bandwidth leads to a low
migration cost and a low remote I/O cost. Therefore,
IOCM gains more benefits from a typical cluster
architecture in which the nodes are connected by a high-
bandwidth interconnect (e.g., Gigabit Ethernet or
Myrinet).

6. Acknowledgements

This work was partially supported by an NSF grant

(EPS-0091900), a Nebraska University Foundation grant
(26-0511-0019), and a UNL Academic Program Priorities
Grant. Work was completed using the Research
Computing Facility at University of Nebraska-Lincoln.
We are grateful to the anonymous referees for their
insightful suggestions and comments.

References

[1] A. Acharya and S. Setia, “Availability and Utility of Idle
Memory in Workstation Clusters,” Proc. ACM SIGMETRICS

Conf. Measuring and Modeling of Computer Systems, May
1999.
[2] J. Aerts, J. Korst, and S. Egner, “Random duplicate storage
for load balancing in multimedia servers,” Information
Processing Letters, Vol. 76/1-2, pp. 51-59, 2000.
[3] E. Balafoutis, G. Nerjes, P. Muth, M. Paterakis, P.
Triantafillou, and G. Weikum, "Clustered Scheduling
Algorithms for Mixed-Media Disk Workloads", Proc. Int’ l Conf.
on Cluster Computing (CLUSTER 2002), 2002.
[4] C.Chang, B. Moon, A. Acharya, C. Shock, A. Sussman, J.
Saltz, “Titan: A High-Performance Remote-sensing Database,”
Proc. of International Conference on Data Engineering, 1997.
[5] L. Chen and H. Choi, “Approximation Algorithm for Data
Distribution with Load Balancing of Web Servers,” Proc. Int’ l
Conf. on Cluster Computing (CLUSTER 2001), 2001.
[6] S. Chen, L. Xiao, and X. Zhang, “Dynamic Load Sharing
with Unknown Memory Demands of Jobs in Clusters,” Proc. 21
Int’ l Conf. Distributed Computing Systems (ICDCS 2001), Apr.
2001.
[7] J. Cruz and Kihong Park, “Towards Communication-
Sensitive Load Balancing,” Proc. 21 Int’ l Conf. Distributed
Computing Systems (ICDCS 2001), Apr. 2001.
[8] R. Ferreira, B. Moon, J. Humphries, A. Sussman, J. Saltz, R.
Miller, and A. Demarzo, “ the Virtual Microscope,” Proc. of the
1997 AMIA Annual Fall Symposium, pp. 449-453, Oct. 1997.
[9] M. Garey and D. Johnson, Computers and Intractability: A
Guide to the theory of NP-Completeness. W.H. Freeman, 1979.
[10] R.L. Graham, “Bounds on Multiprocessing Timing
Anomalies,” SIAM J. Applied Math., Vol.17, No.2, pp.416-429,
1969.
[11] M. Harchol-Balter and A. Downey, “Exploiting Process
Lifetime Distributions for Load Balacing,” ACM transaction on
Computer Systems, vol. 3, no. 31, 1997.
[12] C. Hui and S. Chanson, “ Improved Strategies for Dynamic
Load Sharing,” IEEE Concurrency, vol.7, no.3, 1999.
[13] L. Lee, P. Scheauermann, and R. Vingralek, “File
Assignment in Parallel I/O Systems with Minimal Variance of
Service time,” IEEE Trans. on Computers, Vol. 49, No.2,
pp.127-140, 2000.
[14] P. Scheuermann, G. Weikum, P. Zabback, “Data
Partitioning and Load Balancing in Parallel Disk Systems,” The
VLDB Journal, pp. 48-66, July, 1998.
[15] M. Surdeanu, D. Modovan, and S. Harabagiu,
“Performance Analysis of a Distributed Question/Answering
System,” IEEE Trans. on Parallel and Distributed Systems, Vol.
13, No. 6, pp. 579-596, 2002.
[16] T. Tanaka, “Configurations of the Solar Wind Flow and
Magnetic Field around the Planets with no Magnetic field:
Calculation by a new MHD,” Journal of Geophysical Research,
pp. 17251-17262, Oct. 1993.
[17] G. Voelker, “Managing Server Load in Global Memory
Systems,” Proc. ACM SIGMETRICS Conf. Measuring and
Modeling of Computer Systems, May 1997.
[18] L. Xiao, S. Chen, and X. Zhang, “Dynamic Cluster
Resource Allocations for Jobs with Known and Unknown
Memory Demands” , IEEE Transactions on Parallel and
Distributed Systems, vol.13, no.3, 2002.
[19] X. Zhang, Y. Qu, and L. Xiao, “ Improving Distributed
Wrokload Performance by Sharing both CPU and Memory
Resources,” Proc. 20th Int’ l Conf. Distributed Computing
Systems (ICDCS 2000), Apr. 2000.

