
ECE 177 Lab 10 Spring 2022
Purpose: More practice with arrays, using pointers and pointer arithmetic. Low-level code for a timer.

Assignment: For this lab you will rewrite the previous lab exercise using pointers. (Note that you must
first get the previous lab to work if you haven’t previously done so!) For the most part you will simply
convert each array indexing operation (using “str[i]”) to a pointer operation (using “*p_str”).
Passing arrays to functions will be done by passing a pointer to the first element of the array. Effectively
this is the same as before, but the syntax is different in the function prototype. The call to the function
will be unchanged. There should not be a single square bracket (‘[’ or ‘]’) in your code other than in
array declarations (mapkey() can be unchanged from the previous lab). Use pointers “properly” – do
not simply change x[i] to *(x+i). Also, do not use any “counters”; i.e.,, don’t say, for example, “for
(i=0; i<4; i++) ...” Instead, use your pointers to keep track.

You will also write some functions that allow you to delay more precisely. See notes at the end of this
description (next page) on how to set up the timer:

delaycycles() will delay (fairly) precisely a number of cycles (microseconds) passed to it as an
argument using the board's “Timer 2”. This timer is essentially a “volatile” 32-bit value in memory
called “TIM2->CNT” that we’ll set up to auto-magically count up once per microsecond. This timer is
enabled in the starter code by writing a “0x0001” to the “TIM2->CR1” register. If we write a value to
TIM2->CNT, it continues counting from there. When the counter “rolls over” from 0xFFFFFFFF to
0x00000000 it auto-magically sets a “flag” in the least-significant bit of the “TIM2->SR” register.

So, delaycycles()will function as follows: Write the negative of the number of cycles to delay to
TIM2->CNT, clear the least-significant bit of TIM2->SR, then wait for this bit to auto-magically go to
1 and return. (The function contains a total of maybe 3 lines of code.)

mydelayms() will be rewritten to include a single for loop. The body of the loop will call
delaycycles() to delay exactly 1000 cycles (one millisecond).

Prelab: Rewrite the three CodeLab exercises using pointers. The set of Lab 9 exercises is duplicated
in a “Lab 10” section of CodeLab. Note that while simply resubmitting your Lab 9 solutions may give a
correct answer in CodeLab, I will check your solution by hand to make sure it has been properly
rewritten.

Notes:
The above will get you a B grade. For an A, have your code play tones using the speaker: play a single
friendly beep if OPEN LOCK is displayed and four error beeps if the password is entered incorrectly.
Hook the speaker up as shown in Lab 7a. To play a tone of a certain duration, use a “for” loop whose
body simply toggles the speaker and then delays using delaycycles(). Delay according to the tone
frequency (period is 1/f, so delay half that after each toggle). The for loop should loop a number of
times determined by the desired duration and the above period. See class notes for further information
on how to accomplish this.

Setting up the timer:
We will use Timer 2 on the STM boards. For reference on the registers we are using see the
documentation in Section 13.4 beginning page 353 of the reference manual (also linked on the
webpage) https://www.st.com/resource/en/reference_manual/dm00096844-stm32f401xb-c-and-
stm32f401xd-e-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf

After you create your project from the .ioc file, click on the <projectname>.ioc item in the
project explorer to open it up. On the left click on “Timers” to open it up, then “TIM2”. In the “Mode
and Configuration” block, change “Clock Source” to “Internal Clock”. Then down below expand
“Counter Settings” and set “Prescaler (PSC – 16 bits value) to “83”. “Counter Mode” should be “Up”.
Now on the top menu bar for the .ioc file select “Project “Manager” and then on the left select
“Advanced Settings” and then expand TIM, then TIM2 and then click “HAL” and change it to “LL”.

https://www.st.com/resource/en/reference_manual/dm00096844-stm32f401xb-c-and-stm32f401xd-e-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/dm00096844-stm32f401xb-c-and-stm32f401xd-e-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf

	ECE 177 Lab 10 Spring 2022

