
State Assignment

When implementing a given state table, we often desire a “state assignment” that will

minimize the amount of logic required. Having 1’s next to each other in a K-map will

generally result in simpler (lower cost) logic equations. Our objective, therefore, is to

somehow make an assignment that results in groups of 1’s being next to each other. One

solution is to simply try all possible assignments and then pick the one that results in the

least amount of logic. However, this is not practical when there are more than a handful

of states. A more practical approach is to follow a set of guidelines that tend to result in a

lot of 1’s next to each other in the required K-maps. (Recall that adjacent cells in a K-

map differ by only one variable.)

We will use the following guidelines:

1) (Highest priority) States which have the same next state for each possible input

combination should be given adjacent assignments. Identical next states in only

some “columns” (i.e., for some input combinations) may be included in this list

but with lesser priority.

2) (Medium priority) States which are next states of the same state should be given

adjacent assignments.

3) (Lowest priority) States which have the same output for each input should be

given adjacent assignments. States having the same output for only some columns

(input combinations) may still be included but with lesser priority

You might want a particular state to be a “Reset” state, so assign that one to the state

having all bits as zero. (E.g., state “A” below.) Clearing all flip-flops (assuming a clear

line is attached to each one) will therefore put the state machine in this state.

We won’t necessarily be able to satisfy all guidelines, but in general the better job we do

in satisfying the higher priority guidelines, the simpler the logic tends to be. We can

either lay out the states on a Boolean “assignment” cube or in a K-map style grid. A six-

state example assignment (requiring three state variables; i.e., three flip-flops) might be:

 Q2

 A F

Q0 C E B D

 Q1

 000 001

 010 011

 101

 111 110

 100

 A

B F

D

 E

 C

K-map version

The following example is a Moore state table with two inputs (X and Y) and two outputs

(Z1 and Z2)

NS Output PS

XY = 00 XY = 01 XY = 10 XY = 11 Z1Z2

A B A C E 10

B B F F G 11

C G A B E 01

D A D F G 00

E B A C E 11

F F E F A 00

G G F E B 10

Applying the above guidelines gives us the following “wish list” for states that we would

like to have next to each other on the assignment cube. The first says that states A and E

would like to be next to each other. Rows above have higher priority than those below.

Guideline 1) (A E) (have same next states for all input combinations)

 (A C) (B D) (C E) (have same next states in two columns)

 (A B) (B E) (B F) (B G) (C G) (D F) (same N.S. in one column)

Guideline 2) (A B C E) (These are next states of both A and E)

 (B F G) (A B E G) (A D F G) (A E F) (B E F G) (NS of some state)

Guideline 3) (A G) (B E) (D F) (States having the same output)

For Guideline 2, “BACE” occurred for two states (both A and E), so it has a higher

priority than other Guideline 2 entries.

Note that when 3 or 4 states are desired to be next to each other, the best you can do is to

try to get them on the same “plane” in the assignment cube.

The following assignment seems to do a fair job of satisfying the above guidelines. Other

assignments may satisfy the guidelines about as well. Some may result in simpler logic

than others.

 Q2

 A D G C

Q0 E F B

 Q1

 000 001

 010

D
 011

 101

 111 110

 100

C

 A

F G

B

 E

K-map version

The state table can now be redrawn with the selected state assignment:

We can now rearrange the rows so they are in order (making it easier to transcribe the

next states to the individual K-maps for each flip flop)

Note that each flip-flop’s next state is a function of the present state (three bits) and the

present input (two bits), requiring five variable K-maps. The two outputs are each a

function of the present state only (three bits).

The first next state bit, Q2
+
, and the first output, Z1, are shown below.

NS Output PS

XY = 00 XY = 01 XY = 10 XY = 11 Z1Z2

000 101 000 100 001 10

101 101 111 111 110 11

100 110 000 101 001 01

010 000 010 111 110 00

001 101 000 100 001 11

111 111 001 111 000 00

110 110 111 001 101 10

NS Output PS

XY = 00 XY = 01 XY = 10 XY = 11 Z1Z2

000 101 000 100 001 10

001 101 000 100 001 11

010 000 010 111 110 00

011 XXX XXX XXX XXX XX

100 110 000 101 001 01

101 101 111 111 110 11

110 110 111 001 101 10

111 111 001 111 000 00

 Q2 Q2

 1 0 1 1 1 1 0 1

 0 0 1 0 0 1 1 0

0 X 0 1
Y

0 X 0 1
Y

Q0
1 X 1 1

Q0
1 X 1 1

 Q1 Q1

 X

 Q2

 1 0 1 0

Q0 1 X 0 1

 Q1

Q2
+

Z1

