Sequential Logic Systems

Digital Logic: The hardware from which computers, watches, cellphones, etc. are built

Moores Law: the observation that the number of transistors in a dense integrated circuit doubles about every two years. This is an observation was first made in 1965 and held for decades.

Standard chips: SSI, MSI, LSI, VLSI
Programmable Logic (PLD's, FPGAs, etc.)
Custom Chips, ASIC (Application Specific Integrated Circuits

Digital vs Analog: Digital has accuracy, repeatability, reliability (consider a watch)

Digital design involves:
System design: how to break an overall system into subsystems
This course
\longrightarrow Logic design: how to interconnect building blocks to perform a function
E.g., Gates + flip-flops --> Adder

Circuit Design: how to interconnect specific components
E.g., resitsors, transistors to make flip-flops

Switching Networks (about everything in this course is in this form):

Can be:
Combinatorial - output is a function of the present inputs only (no memory)
Sequential - output is a function of the present and past inputs (requires "memory")

Example combinational circuits

Truth Table for 3-bit version:

How about a 32-x 32-bit multiplier?

Same thing, just an alternate representation

This operation could be "microprogrammed" -- making it sequential inside It would operate similar to the way humans do multiplication of multiple digits through shifting and adding

Sequential Circut generates total

