Concepts:

Sequential Logic Systems

Expressions
Networks (logic circuits)
Truth Tables
Timing Diagrams
Canonical Forms
Minterms
Maxterms

Boolean Algebra - algebraic manipulation

Variables: A, B, C, X, Y, Z, etc. (or X1, X2, X3, etc.)
Values: 0 and 1 -- or could be False/True or Low/High (voltage) or Purple/Yellow, etc. It is convenient to think of in terms of binary numbers because of the similarity between Boolean algebra and "ordinary" algebra

Operations: AND, OR, COMPLEMENT
AND or \bullet or (Like a product)

"Switch" logic

OR or \boldsymbol{t} or \mathbf{V} (Like a sum)

"Switch" logic

COMPLEMENT or NOT or INVERTER
Truth Table:

Truth Table:

A	B	$\mathrm{A}+\mathrm{B}$
0	0	0
0	1	1
1	0	1
1	1	1

A	$\overline{\mathrm{A}}$
0	1
1	0

* Expressions: combinations of variables, values and operators

Equivalent to
$f=\overline{(A \bar{B}+C)} D$
Network*

As in "ordinary" algebra operators have "precedence" and parentheses can be used to change the order

* Truth tables (and K-maps, ${ }^{*}$ discussed later)
* Minterms: essentially a list of rows where the function is TRUE

$$
f=m_{1}+m_{5}+m_{13}=\sum m(1,5,13)
$$

* Maxterms: essentially a list of rows where the function is FALSE

$$
\begin{aligned}
f= & M_{0} \bullet M_{2} \bullet M_{3} \odot M_{1} \bullet M_{6} \bullet M_{7} \bullet M_{8} \bullet \\
& M_{9} \bullet M_{10} \bullet M_{11} \bullet M_{12} \bullet M_{14} \bullet M_{15} \\
= & \prod M(0,2,3,4,6,7,8,9,10,11,12,14,15)
\end{aligned}
$$

Fhputs

For 3 variables

* Timing diagrams:

* All these are different ways to express a function. You should start getting comfortable at working with the different forms and converting between them.

Analysis (as opposed to design)

Given a circuit, what does it do?
You could generate a truth table
You could solve algebraically (simplify)

Functionally equivalent networks:

This network behaves exactly the same -- they have the same truth table How can you tell?
Which one is best?
Can we transform one into the other?

Boolean Algebra gives us some rules for changing one expression into an equivalent expression

