Demorganis

Boolean Algrebra for Syuthesis

$$
\begin{aligned}
\quad \text { commialal } \quad f & =\bar{A} \bar{B} \bar{C} D+\bar{A} B \bar{C} D+A B \bar{C} D \\
& f=0 D_{1}+\mathrm{m}_{1}+01 \\
\mathrm{~m}_{5} & \mathrm{~m}_{1}+1
\end{aligned}
$$

gre measme

$$
(x+y)(x+\bar{y})=x
$$

$A+B \times D$

* $f=(\underline{A}+B) \underline{D} \leftarrow$ this is POS.
easy to get thes from sop asing algetraie monipulation
Note $\bar{f}=$ complement of $f(\underset{\sim 0}{\text { in tamin mond }}$
$\tau_{\text {minterm rows of } \bar{f}=\text { maxterm rows of } f}^{f}$

$\xrightarrow{\text { pemorytion }}$

$$
\begin{aligned}
& \bar{f}=\bar{D}+C+A \bar{B} \\
& f=(\bar{A}+B) \bar{C} D
\end{aligned}
$$

multiple ways to solve
$2.7 a$ in Text

$$
\begin{aligned}
& \bar{x}_{1} x_{3}+x_{1} x_{2} \bar{x}_{3}+ \\
& x_{2} \bar{x}_{3}
\end{aligned}
$$

$$
\bar{x}_{2} x_{3}+x_{1} \bar{x}_{3}+x_{2} \bar{x}_{3}+\bar{x}_{1} x_{2} x_{3}
$$

$$
\bar{x}_{1} \bar{x}_{2} x_{3}+\bar{x}_{1} x_{2} x_{3}+x_{1} x_{2} \bar{x}_{3}+\bar{x}_{2} x_{2} \bar{x}_{3}+x_{1} x_{3}+x_{1} \bar{x}_{x_{3}}+x_{1} \bar{x}_{2} x_{3} \bar{x}_{1} \frac{1}{x_{2}} x_{3}+x_{1} \bar{x}_{2} x_{3}+x_{1} \bar{x}_{1} \bar{x}_{3}+x_{1} x_{2} \bar{x}_{2}+\bar{x}_{3} x_{1} \bar{x}_{3}+\bar{x}_{3}+x_{1} \bar{x}_{2} \bar{x}_{3} \bar{x}_{1} x_{2} x_{3}
$$

$\begin{array}{llllllll}m_{1} & m_{3} & m_{6} & m_{2} & m_{3} & m_{4} & m_{5}\end{array}$

$$
\begin{aligned}
& \text { Canonical minterm form } \\
& \begin{aligned}
f & =\bar{x}_{1} \bar{x}_{2} x_{3}+\bar{x}_{1} x_{2} \bar{x}_{3}+\bar{x}_{1} x_{2} x_{3}+x_{1} \bar{x}_{2} \bar{x}_{3}+x_{1} \bar{x}_{2} x_{3}+x_{1} x_{2} \bar{x}_{3} \\
& =m_{1}+m_{2}+m_{3}+m_{4}+m_{5}+m_{6} \\
& =\sum m(1,2,3,4,5,6)
\end{aligned}
\end{aligned}
$$

Two functions are \angle same equivalent if their equanonical forms are the same minimal SOP

Combining theorem product terms that differ in only one variable can be combined

$$
a b * c+a b c=a c
$$

$$
\begin{aligned}
& f=\bar{x}_{1} \bar{x}_{2} x_{3}+\bar{x}_{1} x_{2} \bar{x}_{3}+\bar{y}_{1} x_{2} x_{3}+\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}+\bar{x}_{1} \bar{x}_{3} \\
& f=\bar{x}_{1} \bar{x}_{3}+x_{1} \bar{x}_{2}+x_{2} \bar{x}_{3} \\
& \text { cost } \\
& \quad-1 \\
& \\
& \quad-1 \\
& \\
& \text { =1) }
\end{aligned}
$$

$$
f=\bar{x}_{1} x_{2}+\bar{x}_{2} x_{3}+x_{1} \overline{x_{3}}
$$

$$
\pi \pi=13 \quad x+x=x
$$

\#gates $+\underset{9}{\text { \#imparts }}$

$$
\text { cost of comomical }=7+24=31
$$

$$
\text { another measure }=\forall \text { gates }
$$

$$
\text { cost of original }=5+13=18
$$ don't count inverters on inputs

$$
\varepsilon_{m}(1,2,3,4,5,6)
$$

Canonical Maxterm form

$$
\begin{aligned}
f= & I M(0,7) \\
& M_{0} 2 \\
& \left(x_{1}+x_{2}+x_{3}\right)\left(\bar{x}_{1}+\frac{M_{7}}{\bar{x}_{2}}+\bar{x}_{3}\right)
\end{aligned}
$$

$$
1
$$

canonical maxterm form
and minimal POS

$M_{0}+M_{7}$ are not adjacent so then cannot be combined
lowest cost circuit

F WAND
Pos

Turn sop into pos (easier to turn Pos rate Sop so do dual)
nu xl

$$
\begin{gathered}
\frac{\left(\bar{x}_{1}+x_{3}\right)}{1} \frac{\left(x_{1}+x_{2}+\bar{x}_{3}\right)}{1}\left(\frac{\left.\bar{x}_{1}+x_{2}\right)\left(\frac{x_{1}+\bar{x}_{2}}{\prime}\right)}{\left.\left(\bar{x}_{1} \bar{x}_{2}+\bar{x}_{1} \bar{x}_{3}+x_{1} x_{3}+x_{2} x_{3}\right) \cdot x_{1} x_{2}\right)}\right. \\
\left(\bar{x}_{1} \bar{x}_{2} \bar{x}_{3}+x_{1} x_{2} x_{3}\right) \text { dual of original } \\
\left(\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}+{ }^{+}\right)\left(x_{1}+x_{2}+x_{3}\right)
\end{gathered}
$$

without Taking Dual
Sop $\bar{x}_{1} x_{3}+x_{1} x_{2} \bar{x}_{3}+\bar{x}_{1} x_{2}+x_{1} \bar{x}_{2}$

$$
\frac{1}{\left(\bar{x}_{1}+x_{2}\right)\left(\bar{x}_{1}+\bar{x}_{3}\right)\left(x_{1}+x_{3}\right)\left(x_{2}+x_{3}\right)+\left(\bar{x}_{1}+\bar{x}_{2}\right)\left(x_{1}+x_{2}\right)}
$$

pos

$$
\left(\bar{x}_{1}+\bar{x}_{2}+\bar{x}_{3}\right) \quad\left(x_{1}+x_{2}+x_{3}\right)
$$

