## Minimal SOP (Sums of Products)

Terms:
Literal - a single variable or its complement
Implicant - any single 1 or group of 1 's that can be represented by a product term (Power of 2 in each direction). e.g., ${ }^{-1}{ }^{\prime} C^{-}, ~ A D B$

Prime Implicant - implicants which cannot be combined to eliminate a variable. e.g. if both $A \bar{B} \bar{C}$ and $\bar{A} \bar{B} C$ are implicants, they are not "Prime" as they can be combined using the combining theorem (aka "uniting theorem" in some texts) $--->A B C+A B C=A \bar{B}$

## A minimal expression uses only Prime Implicants

Essential Prime Implicant (EPI) - a prime implicant which is the only PI to "cover" some (at least one) "1" on the K-map

## Includes

Cover - a collection of Prime Implicants which all the 1's in the function (and no zeros, of course).

Cost - there are many measures. We will use \# gates + \# inputs
Inversions on individual inputs are not counted
Inversions on the output are counted
Minimization process:

1) Identify all the prime implicants
2) Identify all the Essential Prime Implicants (look at all the 1's in the K-map; if any are covered by just one PI, then that PI is an EPI,
EPI must be used in a minimal SOP.
3) Select a minimal set of remaining PI to cover the remaining PI in the function

An important property of the K-map is that "adjacent" cells differ in only one variable and therefore the "combining theorem" can be used when they are both 1

Some PIs 5 variable

$\qquad$
$\bar{A} B \bar{C}$
$\bar{B} \bar{C} D$
Some PIs
$\bar{B} \bar{E}$
$\bar{A} B C D$
$A B \bar{D}$
$\bar{B} \bar{D}$ $\overline{\mathrm{A}} \overline{\mathrm{C}} \mathrm{E}$
$A B \bar{C} \bar{D}$


$$
f=\bar{A} B \bar{C}^{B}+B \bar{C} \bar{D}+B C D
$$

$$
f=
$$

Slightly modified


$$
\mathrm{f}=
$$

$$
\mathrm{f}=
$$

We've seen this one before

$\mathrm{f}=$

$A \bar{B} \bar{C}+A_{B_{C}}$

$\mathrm{f}=$

Don't automatically just choose the biggest groups
(This function happens to be completely covered by EPIs)

No EPI, so where do you start?


Note that there are 13 one's to cover. There are no PI that cover 8 ones; the biggest PI (actually all PI here) cover 4 ones, so a complete cover must include 4 PI (4 product terms). That is the best we can do

Absorption


Consensus


Recommendation: revisit previous homework problems and visualize each operation in a K-map (draw)

Product of Sums minimization:


Compare to
Covering the ONES of f-bar


To get the minimum SOP/POS realization of a function, try both and pick the "best"

