Incompletely Specified Functions (include "don't cares")

$$
\text { 0-9 } \exists \bar{E}\left[\begin{array}{l}
{\left[\begin{array}{l}
1-1 \\
1
\end{array}\right]}
\end{array}\right.
$$

Input combinations which don't occur or you don't car what happens if that input combination does occur

It is sometimes difficult to determine which prime implicants to choose.
None are essential in this problem.
What is the minimal cover?
 the biggest groups

Another 5-variable problem

$$
f=\bar{B} C \bar{D}+B \bar{C} \bar{D}+\bar{A} C D
$$

$\bar{A} \subset D$

AB

Another problem

$$
(A+B+\bar{C})_{f}(\bar{A}+\bar{B})
$$

$$
f=(A+B+\bar{C})(\bar{A}+\bar{B})(\bar{A}+\bar{D})
$$

AD

$$
\bar{f}=\bar{A} \bar{B} C+A B+A D
$$

5-variable problem

Multiple-output Networks

$$
\begin{aligned}
& f 1=(B D)+\bar{A} c \bar{D} \quad f_{2}=\overbrace{\bar{A} B D}^{f}+\bar{A} \bar{C} D \\
& \begin{array}{l}
B=1 \\
D_{D}=1 \\
C \\
D \\
D \\
=1
\end{array} \\
& \cos T=3+7=10 \\
& \cos t=3+8=11
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\frac{A}{C} \equiv D \\
A \\
A \\
B \\
D
\end{array}=75 \\
& \text { total cost }=32 \\
& f 1=\overline{A B D}+A B D+\underline{A C D}=f_{2}+A B D \\
& \cos t=7+19=26
\end{aligned}
$$

$$
\begin{aligned}
& \text { cost }=1+18=25
\end{aligned}
$$

PUZZLE

ANDs
ORs
2 INVERTERS

HINT: The answer is "symmetric"

