Quine-McCluskey Method

--A systematic way to minimize a function
--How you might do it with a computer
--Might help get a better handle on the process

Two steps:

1) Find all prime implicants (include don't-cares as if they are 1's)
x 2) Select a minimum set of prime implicants to cover the 1 's (ignore don't cares) Note:
2) To find the prime implicants use $X Y$ or $X Y^{*}=X \longleftarrow \quad$ Combine two terms if
they differ in one variable

Procedure:
Sxep / 1) List all the minterms (include don't cares) in binary Group them according to the number of 1's
2) Combine those which differ in only one variable in the next column
3) Repeat (2) until no more can be combined

Step 1
 Find all
 Prime Implicants

The K-map isn't part of the process, but we'll use it to show what is happening

All implicants covering two minterms

Here we are trying each pair from adjacent groups
Combine if they differ in exactly one position
Put them in the next column (keep in order)
Check off the two that combined
The way it is organized this means that dashes must match and
1's in the upper group must have a 1 in that position below.
The position that changes from 0 (above) to 1 (below) becomes a dash in the combination in the next column

All unchecked entries represent Prime Implicants

Ste $2 \begin{aligned} & \text { Select a minimum set of } \\ & \text { Prime Implicants to cover the 1's }\end{aligned}$ (Ignore the don't-cares)
 $$
f=\sum m(1,2,9,11,13,15)+d(4,5,6,7,12,14)
$$

Identify Essential Prime Implicants -- any column with a single X means that product term MUST be used

Cross off the EPI and the minterms it covers
Here the functions is covered by EPI
If there are remaining minterms, then find a minimal set to cover them (see next example)

Again, the K-map isn't part of the procedure

$$
f=\sum m(3,4,6,7,10)+d(0,2,5,8,9,11)
$$

Step 1

		$00-0$	
group 0	0000	$0-00$	$0--0$
group 1	0010	-000	$-0-0$
	0100	$001-$	$0-1-$
	1000	$0-10$	$-01-$
group 2	0011	-010	$010--$
	0101	$010-$	10
	0110	$01-0$	
	1001	$100-$	
	1010	$10-0$	
	0111	$0-11$	
	1011	011	Anything left unchecked
		$01-1$	is a prime implicant

Step 2

$$
f=\sum m(3,4,6,7,10)+d(0,2,5,8,9,11)
$$

Prime Implicant Chart
No Essential Prime Implicants

Select a minimum number of rows to that collectively have at least one X in each column

Here you can "reason" the minimal cover
You can't cover all minterms with just one row
Try two rows. Note that each row has an equal "cost" (2-input AND)
Can you cover it in just two rows?

How about this one?

$f=\sum \mathrm{m}(1,2,3,4,5,6)$						
	1	2	3	4	5	6
1,3	x		x			
2,3		x	x			
2,6		x				x
4,6				X		X
4,5				X	X	
1,5	X				X	

Same problem, just rearranging the columns

	1	3	2	6	4	5
1,3	X	X				
2,3		x	x			
2,6			X	X		
4,6				X	x	
4,5					x	X
1,5	X					X

Petrick's method for chosing a minimal cover:

Previous problem			3	4	6	7	10
	A	$0,2,4,6$		X	X		
	B	$0,2,8,10$					X
	C	$2,3,6,7$	X		X	X	
	D	$2,3,10,11$	X				X
	E	$4,5,6,7$		X	X	X	
	F	$8,9,10,11$					X

Label the rows. Now for
minterm 3 you must have ($C+D$)
minterm 4 you must have ($A+E$)
minterm 6 you must have $(A+C+E)$
minterm 7 you must have ($C+E$)
minter 10 you must have ($B+D+F$)
To cover everything you will need the ANDing of all of these:
$(C+D)(A+E)(A+C+E)(C+E)(B+D+F)<---$ Turn this POS into a SOP

$(C+D)(A+E)(C+E)(B+D+F)$
To make it easier, combine some terms first
$(C+D E)(A+E)(B+D+F)$

$(A C+C E+A D E+D E)(B+D+F)$

$(A C+C E+D E)(B+D+F) \quad$ Now multiply it out to get SOP
$(A B C+A C D+A C F+B C E+C D E+C E F+B D E+D E+D E F)$

These are all possible ways to cover the function

