(aka Tabular Method Quine-McCluskey Method
	A systematic way to minimize a function How you might do it with a computer Might help get a better handle on the process
> *	Two steps: (1) Find all prime implicants (include don't-cares as if they are 1's) 2) Select a minimum set of prime implicants to cover the 1's (ignore don't cares) Note: 1) To find the prime implicants use XY or XY* = X
Step	Procedure: (1) List all the minterms (include don't cares) in binary Group them according to the number of 1's
	 2) Combine those which differ in only one variable in the next column 3) Repeat (2) until no more can be combined

Ste	ep 1	Find all Prime Implicants	The K-map process, bu show what	isn't part of the it we'll use it to is happening β
Examp	le: · · · / /			ACD ACD
f(A,B,C,E	$(1,2,9,11) = \sum m(1,2,9,11)$	L(13,15) + d(4,5,6,7,12,14)	ABC D X	X AB-
				1 1
		010010111	MCD P	
			C	
M	- 11 - 1	u d H	AC LINX	
	a (1 ch	ec fut of t		B
	non-e o	(1C Prime impilant	$P_{\frac{1}{2}}$ 159 17	
	a)	1,3 b) 1.9		Pr PT
group 0	V C	\rightarrow 0-01 $A < D -$		\bigcirc $2,6$
	-0001 ABCI	D -001 - BED		d) 159.13
group 1	² 0010√	0-10	01	9,11,13,15
	4 0100 V		-1-0	
	∠ 0110 ✓	-100 - 80	-1-1	45,67
group 2	9 1001	-01-1-5.7	-11	Each ontruit 4 1
	12 1100 1 1130	PI 011-5,17	(11) P: 5-11	formed three
	/ 1011	1,6 -110		ways
group 3	13 1101	10-1	94.25	
aroup A	<u>14 1110</u>	→1-01 AZD	Each entry is	All implicants
group 4	/5 ⁻¹¹¹¹ ~		formed two	minterms
Δ	Il implicants		ways	
C	overing one		All implicants	
n	ninterm	<u> </u>	covering four	
			minterms	
		covering two		
		minterms		
	Here we are tryi	ing each pair from adjacent	groups	
	Combine if they	differ in exactly one position the post column (keep in	on ordor)	
	Check off t	the two that combined	oruer)	
	The way it	is organized this means that	at dashes must match a	and
	1's in	the upper group must have	e a 1 in that position be	low.
	i ne po	a dash in the combination in	n (above) to I (below) b n the next column	ecomes
	All unchecked er	ntries represent Prime Impl	icants	

Step 2 Select a minimum set of Prime Implicants to cover the 1's (Ignore the don't-cares)

	$f = \sum m(1.2.9.11.13.15) + d(4.5)$.6.7.12.14)		
		<u>, -, , , , , , , , , , , , , , , , , , </u>		0010
Priı	ne Implicant Chart	1.	minterns	0-10
			0 11 13 15	0 10
	EPI (26)			Ã/Õ
	PJ - EPT(<u> </u>
	£ 0:	×	K K	CD
	¢ P1(9,11,13,15	++-	* × × ×	- AD
	4,5,6,7,12,13,14,15			
	F= ALD + CD + AD			
	Identify Essential Prime Implicants a that product term MUST be used	any column	with a single X means	
	Cross off the EPI and the minterms it	covers		
\	Here the functions is covered by EPI			
¥				
	If there are remaining minterms, ther (see next example)	i find a minii	mal set to cover them	

			Again, the K-map isn't part of the procdure
New E	kample		
	$f = \sum m(3,4,6,7,10) + d(0,1)$,2,5,8,9,11)	
Ster	0.1		
group 0	0000	0-00	00
	0010	-000	-0-0
group 1	0100	001-	
	0011	-010	01
aroup 2	0101	010-	10
group z	1001	100-	
	1010	10-0	
aroun 3	-0111- 1011	<u>-0-11</u> -011	
group s	1011	01-1	
		011-	Anything left unchecked
		101-	
Ston	2		
Step	\mathbf{Z} $\mathbf{f} = \sum \mathbf{m}(\mathbf{x})$	3,4,6,7,10) + d(0,2,5,	8,9,11)
	Prime Implicant Chart		
			No Essential Prime Implicants
	3 4 6	7 10	
	-0,2,4,6 X X	X X	
	02810		Select a minimum
			number of rows to
	2,3,6,7 X X		have at least one
(2,3,10,11 X	(N K	X in each column
	8,9,10.11	X	
	I		

Here you can "reason" the minimal cover

You can't cover all minterms with just one row

Try two rows. Note that each row has an equal "cost" (2-input AND)

Can you cover it in just two rows?

How about this one?

$f = \sum$	m(1	,2,3,4	,5,6)				_		/	4
								1	1	1
	1	2	3	4	5	6	C[1 1		1
1,3	Х		Х					•	В	
2.3		Х	Х							
2.6		Y				Y				
2,0		Λ				Λ				
4,6				Х		Х				
4,5				Х	Х					
1,5	X em, ju	ıst rea	arran	ging	X the c	olumns				
1,5 proble	X 2m, ju	ust rea 3	arran 2	iging 6	X the c 4	olumns 5				
1,5 proble	X em, ju 1 X	ust rea 3 X	arran 2	iging 6	X the c 4	olumns				
1,5 proble 1,3 2,3	X em, ju 1 X	ust rea 3 X X	arran 2 X	iging 6	X the c 4	olumns				
1,5 proble 1,3 2,3 2,6	X em, ju 1 X	ıst rea <u>3</u> X X	arran 2 X X	iging 6 X	X the c	olumns				
1,5 proble 1,3 2,3 2,6 4,6	X em, ju 1 X	ıst rea <u>3</u> X X	arran 2 X X	iging 6 X X	X the c 4	olumns				
1,5 proble 1,3 2,3 2,6 4,6 4,5	X em, ju 1 X	ust rea 3 X X	arran 2 X X	iging 6 X X	X the c 4 X X	olumns 5 X				

Petrick's method for chosing a minimal cover:

			1				
Previous	problem		3	4	6	7	10
	A	0,2,4,6		Х	Х		
	В	0,2,8,10					Х
	ſ	2367	x		x	X	
	C	2,5,0,7			Λ	Λ	
	D	2,3,10,11	X				Χ
	E	4,5,6,7		Х	Х	Х	
	F	8,9,10,11					X
	Label the rows. Now	for					
	minterm 3 you must	have (C + D)				
	minterm 4 you must	: have (A + E)				
	minterm 6 you must	: have (A + C : have (C + E) + E))				
	minterm 10 you mus	st have (B +	, D + F)				
	To cover everything	ı you will nee	d the A	NDin	g of a	all of	these:
	(C + D) (A + E) (A -	+ C + E) (C +	- E) (B -	+ D +	- F)	<-	Turn this POS into a SOP
		′ \ _/	_/ (_		- /		
				- \			To make it easier,
	(C + D) (A + E)	:) (C + E) (B ·	+ U + I	-)			combine some terms first
	V L						
	(C + DE) (A	+ E) (B + D /	+ F)				
	N K						
	(AC + CE + AE)	DE + DE) (B -	+ D + F)			
			· E)			Now	multiply it out to get SOP
		DE) (D + D ·	τ Γ)				mattiply it out to get 501
	(ABC + ACD + ACF +	BCE + CDE	+ CEF -	+ BDI	E + D)E + [DEF) These are all
						\uparrow	to cover the
							function
				Т	ີ his ດ	ne is	the one with
				t	he fe	west	product terms