
ECE 486 DSP Configuration for the

STM32L476G-Discovery Demonstration
Board

Don Hummels

Electrical and Computer Engineering
University of Maine

December 28, 2017

Contents
1 Background 2

2 Connecting to the Board 2
2.1 How to not break the board . 3
2.2 Suggested board modification . 3

2.2.1 Improving DAC and ADC performance . 3
2.2.2 Improving clock accuracy and stability . 3

3 Writing code 4

4 Software interface 4

5 Compiling and Running 6
5.1 Makefile . 6
5.2 Flashing and running image . 6
5.3 Running a debugger . 6

6 Hardware Interface 7
6.1 Analog Inputs/Outputs . 8
6.2 Use of GPIO Pins . 8
6.3 Accessing the USER Pushbutton . 8

7 Sample Program 9

Abstract

This document describes the use of the STM32L476-Discovery evaluation board to support labs in ECE 486
Digital Signal Processing.

1

To prevent damage to the board, it is recommend that all external function-generator
connections (PA1 and PA2) be made through a 10 kΩ resistor, limiting currents to a few
milliamps (even for inadvertently large function generator settings)

Caution

!!!

Figure 1: STM32L476G-Discovery Board connected for test. The P1 connector provide the functionality needed for
ECE-486.

1 Background
STMicroelectronics has produced a low-cost evaluation board to showcase their STM32L4xx line of processors. The
STM32L476G-Discovery board features an STM32L476VG microcontroller, which includes 1MB of Flash memory,
128 kB of user RAM and a floating point co-processor. The microcontroller includes multiple ADC and DAC periph-
erals, as well as a rich host of other peripherals (DMAs, Timers, USART, and support for I2C, SPI, USB-OTG, and
a host of other acronyms). An external USB interface allows debugging and programming. The development board
includes user-controlled LEDs, a small LCD display, a reset pushbutton and joystick, a digital MEMs microphone,
gyroscope, compass, , and an external audio output DAC.

In ECE 486, the board is configured to allow students to perform signal processing experiments in real-time.
Two 12-bit ADCs are configured to sample an input waveform. The sampled data is passed to a user for processing.
The calculated output waveform is then streamed to a pair of output DACs so that the results may be viewed on an
oscilloscope. All timing and DMA data transfers are handled via an ECE 486 library. This document provides the
hardware and software interface necessary to use this library.

2 Connecting to the Board
The ECE 486 functionality is obtained through the 20 pins P1 extension connector on the STM32L476G-Discovery
board. The connector may be plugged directly into a prototyping board to allow easy access to the analog and digital
inputs and outputs. Figure 1 shows a photo of correctly configured board under test. Pin assignments for the 20-PIN
P1 connector are discussed further in Section 6.

2

2.1 How to not break the board
The board may be safely powered by connecting the discovery board to a PC through the “type A to mini-B” USB
connector CN1. (This connector is also used to program and debug software on the board.)

Care should be taken when applying external signals to any of the pins of the board, since there is limited protection
on the development board. Signals outside of the 0-3 V power supply range can potentially damage the processor. All
GPIO pins being used do contain clamping diodes on the processor, but protection diodes typically tolerate only small
amounts of current. Function generator connections are particularly problematic, since it’s easy to leave the generator
on when power is removed—and it’s easy to accidentally apply large (or negative) voltages. A 10 kΩ protection resistor
is recommended for all analog input signals.

2.2 Suggested board modification
The default configuration of the STM32L476G-Discovery board is not optimal for the DSP labs for this course.
Significant improvements in performance is possible by reconfiguring a few jumpers.

2.2.1 Improving DAC and ADC performance

For ECE 486, pins PA1 and PA2 are used to interface to the on-chip ADCs, and PA5 and PA3 are used to access the
on-chip DACs. (Technically, PA3 is actually the output of an opamp, which is being used to buffer the DAC channel
1 output to allow access from the connector.)

Unfortunately, pins PA1, PA2, PA3, and PA5 are also connected to the Joystick “left”, “right”, “up”, and “down”
buttons. A large 100 nF capacitor is attached to these lines on the discovery board to act as a hardware de-bounce
circuit. These capacitors will severly limit the bandwidth of the analog signals on the required pins.

The Joystick and de-bounce capacitors may be isolated from the input/output pins by removing the 0Ω resistors
R52, R54, R56, and R58 on the discovery board. Removing these resistors will restore the bandwidth for the PA1,
PA2, PA3 and PA5 GPIO lines, but will disconnect the directional inputs from the joystick. (The joystic “center” input,
connected to PA0 will continue to operate, and is used in the software library as a user pushbutton input.)

The options are:

• Remove R52, R54, R56, and R58: With the Joystick disconnected, you’ll be able to use the available bandwidth
for both the ADCs and DACs. You will no longer have access to the directional inputs from the Joystic.

• Do Nothing: Leave R52, R54, R56, and R58 populated: Your board will operate, and you can access the joystick
directional inputs if desired. You can still develop and debug code for this class, but the bandwidth of the analog
signals you measure will be severly limited by the joystic capacitors. If the ADC inputs are connected through
10 kΩ resistors, your ADC inputs will be passed through a lowpass filter with a bandwidth of about 160 Hz.
The DACs will be unable to drive the output pins at speeds much above 1 ksample/sec.

2.2.2 Improving clock accuracy and stability

By defaut, the STM32L476G processor on the discovery board does not have the crystal reference oscillator populated.
To use the processor “out-of-the-box”, the processor’s internal RC oscillator (MSI) can be used to provide a reference
clock source. However, the resulting clock signals will not be terribly accurate, and will drift over time. The drift will
become most notable for labs in which multiple (non-synchronized) development boards are sharing signals with each
other.

The discovery board does, however, have a crystal reference oscillator that is used to support the other ST-LINK
MCU for communication with a host computer. By changing a few jumpers, this 8 MHz reference signal may be
shared with the STM32L476G processor, significantly improving the clock accuracy.

Here are some configuration options:

• To use the 8 MHz crystal reference signal from the ST-LINK MCU STM32F103CBT6:

– Discovery modifications: SB18 closed, SB22 opened, R89 not fitted.

– Specify HSE_EXTERNAL_8MHz in the initialize_ece486() call.

• To use the internal RC Oscillator:

– Leave Discovery default configuration: SB18 opened, SB21 and SB22 closed.

– Specify MSI_INTERNAL_RC in the initialize_ece486() call.

3

• To use an externally generated clock:

– Leave Discovery default configuration: SB18 opened, SB22 closed, R89 not fitted.

– Drive an 8 MHz external clock signal on PH0 (pin 9) through the P2 header.

– Specify HSE_EXTERNAL_8MHz in the initialize_ece486() call.

3 Writing code
For ECE 486, a gcc cross-compiler is used to compile C code for the board. Writing code for this board is no different
from writing any other C code under Linux. Bring up your favorite editor (e.g. kate, vi, nedit, gedit, nano, etc.), and
just start writing code! No specific integrated development environment (IDE) is required.

4 Software interface
Programs for real-time signal processing should initialize the processor using a single call to the initialize_ece486()
function before any other processing. This call configures the GPIO terminals of the processor, and then waits until the
blue USER push-button is pressed (Joystic “center”) while the red and green LEDs blink. (This idle state is returned
to when the black RESET button is pressed, allowing the board to be reprogrammed without error, we hope.)

When the USER push-button is pressed, the initialize_ece486() function configures the on-chip ADC
and DAC so that blocks of memory are continually transferred from the ADC and written to the DAC (at a desired
sample rate) while the processor is working on other tasks (such as manipulating the signals). In a typical signal
processing application, one block of data is requested from the ADC, processed by the processor, and the resulting
output waveform is transferred back to DAC output buffer. When a new block of data is requested from the ADC, the
processor remains idle until the ADC interface competes filling the requested block and the returns the data for further
processing.

Two interface functions getblock() and putblock() are provided to enable a user to easily transfer blocks
of data to and from the DACs and ADCs. The user must allocate any required memory to store the ADC input
samples or the DAC output samples. (Similar stereo input/output routines are provided by getblockstereo()
and putblockstereo.)

Most real-time signal processing programs will access the following functions:

void setblocksize(int n samples) :
Optionally, the user may call setblocksize() to determine the size of the data block that will be used in later
calls to getblock() or putblock. If setblocksize() is not called, a default value “DEFAULT_BLOCKSIZE”
will be used. Using a larger block size may result in more efficient code, while using a smaller block size will
reduce the latency of the system.

void initialize ece486(sample rate select, input mode, output mode, clk ref) :
The initialize_ece486() function is called once, at the beginning of program execution to configure the
ADCs, DACs, DMAs, processor clocks, etc.

Valid values for sample_rate_select are defined by including ece486.h and include FS_48K, FS_24K,
and FS_8K to request sample rates of 48, 24, and 8 ksps respectively. (Similar constants are available for 2, 4,
5, 8, 10, 16, 20, 24, 25, 32, 40, 48, 50, 64, 80, 96, 100, 200, 400, and 500 ksps.)

Similarly, valid values of input_mode are MONO_IN and STEREO_IN to configure whether a single ADC
(PA1) or both ADCs (PA1 and PA2) are used. Valid values of output_mode are MONO_OUT or STEREO_OUT
to configure whether a single DAC (PA5) or both DACs (PA5 and PA3) are used.

Valid values for clk_ref include MSI_INTERNAL_RC and HSE_EXTERNAL_8MHz. An “out-of-the-box”
discovery board is configured to use the internal MSI RC reference oscillator (which can be unstable, and
should be expected to drift over time). Specifying MSI_INTERNAL_RC selects this option. By modify-
ing a few jumpers, you can utilize the 8 MHz crystal reference clock that is used by the ST-LINK MCU
that is also on the development board for communication with the host. If your board is modified, specify
HSE_EXTERNAL_8MHz to use this more accurate clock. See section 2.2.2 for the required modifications.

int getblocksize(void) :
getblocksize() returns the number of samples that getblock() will produce, and the number of sam-
ples that must be provided to putblock(). This is useful for allocating the any arrays needed to store or

4

manipulate the waveforms (especially when setblocksize was not called). In the interface description be-
low, a working array (named “working”) is used to store data provided by getblock() and pass output data to
putblock(). Storage for this working array must be allocated by the interface user.

int getsamplingfrequency(void) :
getsamplingfrequency() returns the best guess at the actual sampling rate being implemented (in sam-
ples/second). The actual sample rate may be slightly different from the requested rate, depending upon the
capabilities of the on-board timers that generate the clocks. Note that the time reference being used for the
processor is not crystal reference — it is a factory calibrated on-chip RC time reference. Frequency errors on
the order of a percent or so would not be unexpected.

void getblock(float *working) :
getblock() waits until the ADC (connected to PA1) has complete acquiring a block of input samples. These
samples are then transferred into the caller’s working array and returned. The caller must allocate the memory
required for the returned result array.

Returned samples are stored as single-precision (type float) values ranging from −1.0 (corresponding to input
voltages near 0 V) to +1.0 (corresponding to the maximum input voltage, near 3 V). The actual input voltage
corresponding to the ith sample is approximately v(iTs) ≈ 1.5 + (working[i] ∗ 1.5).

void putblock(float *working) :
putblock() transfers the caller’s working array for output via the DAC (connected to PA5).

Output samples should range from −1.0 (for a minimum DAC output, near 0 V) to +1.0 (for the maximum
output value near 3.0 V).

In practice, initialize_ece486() and getblocksize() are called once, memory is allocated, and then
the getblock() and putblock() functions are repeatedly called as blocks of input samples are processed to form
the output waveform.

If the board has been configured to use stereo inputs or outputs, modified data transfer functions are provided with
additional arrays for the two ADCs/DACs. The two analog input pins are PA1 and PA2, and the DAC outputs are
accessed through PA5 and PA3.

void getblockstereo(float *input1, float *input2)

void putblockstereo(float *output1, float *output2)

A few other utility functions are provided which may prove useful to debug or measure program performance. A
GPIO digital io pin provides one method of indicating program status, or timing events (via an oscilloscope) within
the program flow. The pin is configured as PD0 on the discovery board.

DIGITAL IO SET();

DIGITAL IO RESET();

DIGITAL IO TOGGLE();

The 6-character LCD display is also initalized, and output may be written to the display using the STM HAL interface
library:

BSP LCD GLASS DisplayString(“HELLO”);

BSP LCD GLASS ScrollSentence(“This is a test”,SCROLL SPEED MEDIUM);
(SCROLL SPEED LOW and SCROLL SPEED HIGH are also supported.)

LEDs are also controled using the HAL library. The board has two user-programmable LEDs: Red (LED4), and Green
(LED5). The initialize_ece486() function resets the red LED, and sets the green LED on startup to indicate
normal running conditions. Error conditions will set the red LED. To change the state of the green LED, use:

BSP LED Toggle(LED5);

BSP LED On(LED5);

BSP LED Off(LED5);

5

5 Compiling and Running

5.1 Makefile
Cross-compiling code with multiple libraries requires relatively complex gcc commands, so a Makefile is provided
that handles telling gcc how it should compile code, and where to find libraries. Edit the Makefile to include your
source code (following the comments in the Makefile). Running “make” should create two output files ”myexe” and
“myexe.bin”, where “myexe” is the executable name that you provide in the Makefile.

When the board is connected to a host computer via the USB port, the host should detect a mass-storage device,
and a serial port. The board is “flashed” by dragging the “myexe.bin” file to mass-storage device. Alternatively (and
less reliable?), reset the discovery board to disable the DMA activity. Then typing “make flash” should ”flash” the
board by writing the ”myexe.bin” binary image to the development board.

Any “printf()” output generated by code on the discovery board may be accessed through the serial port accessed
through the USB connection. Connect a serial terminal (115200 8N1) on the host to the serial port in order to access
the output.

5.2 Flashing and running image
1. Connect a USB cable from the host to the CN1 connector on the Discovery board.

2. Reset the STM32L476 board (hit the black push-button)

3. On the host, run:

make flash

4. Reset the STM32L476 board to restart the program back to the idle state. The green and red LEDs should be
flashing.

5. Continue program execution beyond the “initialize_ece486()” function by pressing the blue USER
push-button. The green LED should stay lit, indicating that the image is executing. Error conditions are indicated
by lighting the red LED.

5.3 Running a debugger
A symbolic debugger may be used to trace program execution, set breakpoints, and examine variable values. The
“gdb” debugger is supported as follows:

1. Recompile the code with debugging options, and flash the compiled image to the processor.

make clean
make debug
make flash

2. In a separate window on the host, run the st-util to establish the communications link between the develop-
ment board and the host (Port :4242).

st-util

3. You may run gdb directly using the ELF file (called “myexe” in Section 5.1). After running the ARM compiled
gdb command (at the “(gdb)” prompt) specify the target development board port provided by st-util.

arm-none-eabi-gdb myexe
>>>>> (Output lines from gdb... wait for the (gdb) prompt) <<<<<
(gdb) target extended :4242

You may now continue using gdb commands to trace program execution.

6

Figure 2: Peripheral configuration used to stream analog inputs to the user program, and user data output samples
back to the DACs for analog outputs.

4. As an alternative to using the raw gdb commands, the “ddd” debugger provides a graphical front-end to the gdb
debugger. To use ddd, you must specify the path to the ARM-compiled gdb debugger on the command line, and
then specify the target on the “(gdb)” prompt within the ddd window:

ddd --debugger arm-none-eabi-gdb myexe
>>>>>> Graphical debugger should start <<<<<
>>>>>> Look for the gdb command window with the (gdb) prompt <<<<<
(gdb) target extended :4242

6 Hardware Interface
Figure 2 provides an overview of the STM32L476G peripherals used to stream analog input samples from the ADCs
and to the DACs.

Pin assignments for the 20-pins accessed through the ECE 486 connector on the Discovery board P1 connector are
summarized in Table 1.

7

Table 1: Discovery board P1 Pin Assignments

P1 Pin P1 Label ECE 486 Function
1 3V3 Power (3.3 V)
2 GND Ground
3 2V5 Power (2.5 V)
4 GND Ground
5 3V Power (3 V)
6 BOOT0
7 PB3 3V3 REG ON: Tied to 3.3V Regulator via 4.7 kΩ
8 PB2 Red LED
9 PE8 Green LED
10 PA0 GPIO Input: Connected to Joystic “center”
11 PA5 Primary DAC Output(MONO and STEREO)
12 PA1 Primary ADC Input (MONO and STEREO)
13 PA2 Second ADC Input (STEREO only)
14 PA3 Second DAC Output via opamp (STEREO only)
15 PB6 I2C1 SCL
16 PB7 I2C1 SDA
17 PD0 EXT RST: GPIO Digital Output
18 NC
19 GND Ground
20 GND Ground

6.1 Analog Inputs/Outputs
The STM32L47607VGT6 microcontroller includes two on-chip 12-bit ADCs, and two on-chip 12-bit DACs which
are accessed through the PA1, PA2, PA5, and PA3 terminals. In MONO modes, only the PA1 or PA5 terminals are
active. The analog inputs and outputs should be in the 0 − 3 V range. These analog inputs and outputs are clamped
to the supply rails within the microcontroller using protection diodes, but currents in or out of these terminals must
be limited to no more than 5 mA. Inadvertent damage to the microcontroller may be avoided by making all function
generator connections to the PA1 or PA2 terminals through a 10 kΩ resistor.

6.2 Use of GPIO Pins
A digital output is configured on pin PD0. Users can set the values of these output using statements such as:

DIGITAL_IO_SET();
DIGITAL_IO_RESET();
DIGITAL_IO_TOGGLE();

The pins may be set/cleared to enable timing of segments of code using an oscilloscope.

6.3 Accessing the USER Pushbutton
The Blue USER pushbutton (Joystick “center”) is also configured by the initialize_ece486() function. But-
ton presses may be detected in software by periodically monitoring the global variable KeyPressed. Normally
KeyPressed has a value of “RESET”. The value changes to “SET” on every button press, and remains at this value
until reset by the user’s software. A typical code segment is given below:

#include "ece486.h"
...
if (KeyPressed) {

... // Take some action on button presses
UserButtonPressed = RESET; // Allows detection of the next press

}
...

8

7 Sample Program

1 /∗
2 ∗ Example program t o i l l u s t r a t e t h e use o f t h e ECE 486 i n t e r f a c e .
3 ∗
4 ∗ An i n p u t waveform i s c o p i e d t o t h e o u t p u t DAC. The waveform i s a l s o
5 ∗ s q u a r e d and s t r e a m e d t o t h e second DAC o u t p u t . Each
6 ∗ USER b u t t o n p r e s s i n v e r t s t h e s i g n a l on t h e o r i g i n a l DAC.
7 ∗
8 ∗ The use o f p r i n t f ()
9 ∗ /

10

11 # i n c l u d e ” s t m 3 2 l 4 x x h a l . h ”
12 # i n c l u d e ” s t m 3 2 l 4 7 6 g d i s c o v e r y . h ”
13

14 # i n c l u d e ” ece486 . h ”
15 # i n c l u d e < s t d l i b . h>
16 # i n c l u d e <s t d i o . h>
17 # i n c l u d e <math . h>
18

19 e x t e r n F l a g S t a t u s KeyPressed ; / / Use t o d e t e c t b u t t o n p r e s s e s
20

21 i n t main (vo id)
22 {
23 i n t nsamp , i ;
24 f l o a t ∗ i n p u t , ∗ o u t p u t 1 , ∗ o u t p u t 2 ;
25 s t a t i c f l o a t s i g n = 1 . 0 ;
26 s t a t i c i n t b u t t o n c o u n t = 0 ;
27

28 c h a r l c d s t r [8] ;
29

30 /∗
31 ∗ S e t up ADCs , DACs , GPIO , Clocks , DMAs, and Timer
32 ∗ /
33 i n i t i a l i z e e c e 4 8 6 (FS 50K , MONO IN, STEREO OUT , HSE EXTERNAL 8MHz) ;
34

35 /∗
36 ∗ A l l o c a t e R e q u i r e d Memory
37 ∗ /
38 nsamp = g e t b l o c k s i z e () ;
39

40 i n p u t = (f l o a t ∗) m a l lo c (s i z e o f (f l o a t)∗ nsamp) ;
41 o u t p u t 1 = (f l o a t ∗) m a l lo c (s i z e o f (f l o a t)∗ nsamp) ;
42 o u t p u t 2 = (f l o a t ∗) m a l lo c (s i z e o f (f l o a t)∗ nsamp) ;
43

44 i f (i n p u t ==NULL | | o u t p u t 1 ==NULL | | o u t p u t 2 ==NULL) {
45 f l a g e r r o r (MEMORY ALLOCATION ERROR) ;
46 w h i l e (1) ;
47 }
48

49 /∗
50 ∗ Normal ly we a v o i d p r i n t f () . . . e x p e c i a l l y once we s t a r t a c t u a l l y
51 ∗ p r o c e s s i n g s t r e a m i n g samples . Th i s i s h e r e t o i l l u s t r a t e t h e
52 ∗ use o f p r i n t f f o r debugg ing programs .
53 ∗
54 ∗ To s e e t h e p r i n t f o u t p u t , c o n n e c t t o t h e ST−Link s e r i a l p o r t .
55 ∗ Use : 115200 8N1
56 ∗ /
57 p r i n t f (” S t a r t i n g e x e c u t i o n u s i n g %d samples p e r i n p u t b l o c k .\ n ” , nsamp) ;
58

59 /∗
60 ∗ I n f i n i t e Loop t o p r o c e s s t h e d a t a s t r eam , ” nsamp ” samples a t a t ime
61 ∗ /
62 w h i l e (1){
63 /∗
64 ∗ Ask f o r a b l o c k o f ADC samples t o be p u t i n t o t h e working b u f f e r
65 ∗ g e t b l o c k () w i l l w a i t h e r e u n t i l t h e i n p u t b u f f e r i s f i l l e d . . . On r e t u r n
66 ∗ we work on t h e new d a t a b u f f e r . . . t h e n r e t u r n h e r e t o w a i t f o r
67 ∗ t h e n e x t b l o c k
68 ∗ /
69 g e t b l o c k (i n p u t) ;

9

70

71 /∗
72 ∗ s i g n a l p r o c e s s i n g code t o c a l c u l a t e t h e r e q u i r e d o u t p u t b u f f e r s
73 ∗ /
74

75 DIGITAL IO SET () ; / / Use a scope on PD0 t o measure e x e c u t i o n t ime
76 f o r (i =0 ; i<nsamp ; i ++) {
77 o u t p u t 1 [i] = s i g n ∗ i n p u t [i] ;
78 o u t p u t 2 [i] = i n p u t [i]∗ i n p u t [i] ;
79 }
80 DIGITAL IO RESET () ; / / (f a l l i n g edge done p r o c e s s i n g d a t a)
81

82 /∗
83 ∗ p a s s t h e p r o c e s s e d working b u f f e r back f o r DAC o u t p u t
84 ∗ /
85 p u t b l o c k s t e r e o (o u t p u t 1 , o u t p u t 2) ;
86

87 i f (KeyPressed) {
88 KeyPressed = RESET ;
89 s i g n ∗= −1.0; / / I n v e r t o u t p u t 1
90

91 /∗
92 ∗ On each p r e s s , modify t h e LCD d i s p l a y , and t o g g l e an LED
93 ∗ (LED4=red , LED5= g r e e n) (Red i s used t o show e r r o r c o n d i t i o n s)
94 ∗
95 ∗ Don ’ t be s u r p r i s e d when t h e s e c a u s e a Sample Overrun e r r o r ,
96 ∗ depend ing on your sample r a t e .
97 ∗ /
98 b u t t o n c o u n t ++;
99 s p r i n t f (l c d s t r , ”BTN %2d ” , b u t t o n c o u n t) ;

100 BSP LCD GLASS DisplayString (l c d s t r) ;
101 BSP LED Toggle (LED5) ;
102 }
103 }
104 }

10

	Background
	Connecting to the Board
	How to not break the board
	Suggested board modification
	Improving DAC and ADC performance
	Improving clock accuracy and stability

	Writing code
	Software interface
	Compiling and Running
	Makefile
	Flashing and running image
	Running a debugger

	Hardware Interface
	Analog Inputs/Outputs
	Use of GPIO Pins
	Accessing the USER Pushbutton

	Sample Program

