
Implementation of an Underwater

Digital Acoustic Telemetry

Receiver

By

Raymond A. McAvoy

B.S. University of Maine, 1999

A THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

(in Electrical Engineering)

The Graduate School

The University of Maine

May, 2002

Advisory Committee:

Donald M. Hummels, Professor of Electrical and Computer Engineering,
Advisor

Bruce E. Segee, Associate Professor of Electrical and Computer Engineering

Duane Hanselman, Associate Professor of Electrical and Computer Engineering

LIBRARY RIGHTS STATEMENT

In presenting this thesis in partial fulfillment of the requirements for an

advanced degree at The University of Maine, I agree that the Library shall make

it freely available for inspection. I further agree that permission for “fair use”

copying of this thesis for scholarly purposes may be granted by the Librarian. It

is understood that any copying or publication of this thesis for financial gain shall

not be allowed without my written permission.

Signature:

Date:

Implementation of an Underwater

Digital Acoustic Telemetry

Receiver

By Raymond A. McAvoy

Thesis Advisor: Dr. Donald M. Hummels

An Abstract of the Thesis Presented
in Partial Fulfillment of the Requirements for the

Degree of Master of Science
(in Electrical Engineering)

May, 2002

This thesis presents the design and software implementation of an under-

water acoustic modem receiver. Communication links in underwater environments

face several undesired effects. These include multipath signal reflections, inter-

symbol interference, and channel fading. This receiver design uses a combination

of time and spatial diversity inputs combined with an adaptive feedback equalizer

to counteract those effects.

The design is based on three modules. A front-end module demodulates and

Doppler-compensates the incoming data. A channel combiner module receives

data from one or more front ends for spatial diversity and combines repeated

transmissions for time diversity. The data from each input channel is time aligned

and stored in a ‘job’ structure. The channel combiner also calculates tap sizes and

locations for the feedback equalizer. Completed ‘job’ structures from the channel

combiner are then sent to an equalizer module.

The modules are implemented in C language code written and compiled for

Analog Devices SHARC digital signal processors. The hardware consists of several

processors that are interconnected via link ports. This allows each module to run

on a separate processor. It also allows for multiple instances of certain modules to

be run simultaneously to provide real-time operation.

ACKNOWLEDGMENTS

This work has been supported by the Naval Undersea Warfare Center

under a contract administered by the University of Maine Electrical Engineering

Department.

Many thanks to Don Hummels for making this work possible through his

guidance and assistance.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS.. ii

LIST OF TABLES .. vi

LIST OF FIGURES .. vii

Chapter

1 Introduction .. 1
1.1 Background . 1
1.2 Purpose of the Research. 1
1.3 Thesis Organization . 3

2 UDAT System Overview .. 5
2.1 UDAT Receiver Modules . 5
2.2 Sensor, Channel, and Job Notation . 7
2.3 Data Frame/Modulation Format . 8

2.3.1 TID Ping . 8
2.3.2 Quiet Times . 9
2.3.3 Modulated Data . 9

3 Receiver Front End .. 11
3.1 Signal Format . 11
3.2 Front End Tasks . 11
3.3 Front End Overview . 12
3.4 Calculation of the Complex Representation . 15
3.5 Doppler Tracking . 17

3.5.1 Complex Representations of Bandpass Signals 18
3.5.2 Time Scaling of Signals . 19
3.5.3 Nonuniform Sampling of x(t) . 20
3.5.4 A Phase Locked Loop to Adjust the Sample Rate 22

3.5.4.1 Selection of Loop Filter Coefficients 25
3.5.4.2 Doppler Tracking PLL Summary . 26

3.5.5 Nonuniform Sampler Implementation . 27
3.5.6 Filter Designs . 30

3.6 Lowpass and Matched Filters . 31
3.7 Frame Synch Ping Correlation . 33

4 Adaptive Feedback Equalizer . 37
4.1 General Equalizer Algorithm Overview . 38
4.2 Equalizer Implementation . 47

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

iii

4.2.1 Vector and Matrix Storage . 47
4.2.2 Initializing Vectors and Matrices . 47
4.2.3 Copying Sections of Vectors and Matrices . 48
4.2.4 Dot Products . 48
4.2.5 Matrix - Vector Multiplication . 49
4.2.6 RLS Correlation Matrix Update. 49

4.3 Equalizer Front End . 50
4.4 Equalizer Testing and Verification . 51
4.5 RLS Equalizer Benchmarks . 52

4.5.1 41 Taps . 54
4.5.2 62 Taps . 55
4.5.3 104 Taps. 57
4.5.4 Benchmark Summary . 58

5 Channel Combiner . 60
5.1 Interface to Front-End Modules . 61
5.2 Equalizer Job Queuing . 63

5.2.1 Equalizer Jobs . 63
5.2.2 Job Queuing Methods . 65
5.2.3 Common Memory Transfer Theory of Operation 66
5.2.4 Link Port Transfer Theory of Operation . 67

5.3 State Machine Implementation . 67
5.3.1 Overall Status. 68
5.3.2 Sensor State Machine . 70

5.3.2.1 Ping Synchronization . 70
5.3.2.2 Get Ping TID . 73
5.3.2.3 Wait for Ping . 73
5.3.2.4 Watch for Detection . 73
5.3.2.5 Record Direct Path . 74
5.3.2.6 Build Sparsing List. 76
5.3.2.7 Record Modulated Data . 76

5.3.3 Job State Machine . 77
5.3.3.1 Abort Channels . 77
5.3.3.2 Calculate Taps . 79
5.3.3.3 Check Send . 79
5.3.3.4 Send Job . 80

5.4 Equalizer Tap Calculations . 80
5.4.1 Tap Selection Theory of Operation. 81
5.4.2 The Linked List Structure . 83
5.4.3 Maintaining the List. 83
5.4.4 Selection of Sparse Tap Sizes and Locations. 86

5.5 Channel Combiner Testing and Verification . 86
5.5.1 Ping Synchronization Testing . 88
5.5.2 Watch for Detection Testing . 88
5.5.3 Build Sparsing List Testing . 89

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

iv

5.5.4 Calc Taps Testing . 89
5.5.5 Overall Channel Combiner Testing . 89

6 System Testing and Conclusions. 92
6.1 Test Setup Configuration. 92
6.2 System Testing Procedures and Results. 96

6.2.1 Front-End Module Testing . 96
6.2.2 Overall System Testing. 98

6.3 Conclusions and Future Work . 102

REFERENCES .. 104

APPENDIX A. Memory Usage and Allocation.. 105
A.1 Channel Combiner Memory Usage . 105
A.2 RLS Equalizer Memory Usage . 107

APPENDIX B. Software Configuration .. 109
B.1 Front-End Module Parameters. 109
B.2 RLS Equalizer Module Parameters . 110
B.3 Channel Combiner Parameters . 110

BIOGRAPHY OF THE AUTHOR ... 112

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

v

LIST OF TABLES

4.1 RLS equalization times without compiler optimization. 59

4.2 RLS equalization times with compiler optimization. 59

5.1 Elements of the sensor data structure. 62

5.2 Elements of the front-end data sub-structure. 62

5.3 Elements of the equalizer job structure. 64

5.4 Elements of the equalizer scratch space structure. 65

A.1 Memory used by the equalizer job structure. 106

A.2 Memory used by the scratch space structure. 106

A.3 Memory used by the front-end sub-structures. 106

A.4 Equalizer memory allocated on the heap. 108

B.1 Front-end module run-time parameters. 109

B.2 RLS equalizer module run-time parameters. 110

B.3 Channel combiner module compile-time parameters. 111

B.4 Channel combiner module run-time parameters. 111

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

vi

LIST OF FIGURES

2.1 Interconnection of UDAT receiver modules. 6

2.2 Format of a single telemetry data frame. 8

3.1 Functional block diagram of the telemetry receiver front-end. 13

3.2 Magnitude response of the first FIR decimation filter, used to
reduce the sample rate by a factor of five. 16

3.3 Block diagram of the Doppler compensator and resampler. 17

3.4 Complex representation of the phase-locked loop used for Doppler
tracking. 23

3.5 Frequency-domain representation of the (linearized) phase-locked
loop. 24

3.6 Magnitude response of the 6th order elliptical pilot tone filter. 31

3.7 Magnitude response of the 800-coefficient FIR interpolation
filter used to implement the resampler. 32

3.8 Magnitude response of the output FIR anti-aliasing filter. 33

4.1 Block diagram of the decision feedback equalizer - digital phase
locked loop (DFE-DPLL). 40

4.2 Block diagram of the rth diversity feedforward section of the
DFE-DPLL. 41

4.3 Block diagram of the non-sparse feedback section of the DFE-
DPLL. 42

4.4 Block diagram of the spth sparse feedback section of the DFE-
DPLL. 42

4.5 RLS equalizer error from C version. 51

4.6 RLS equalizer error from MATLAB version. 52

4.7 RLS benchmark for 41 taps. 54

4.8 RLS benchmark for 41 taps with optimization. 55

4.9 RLS benchmark for 62 taps. 56

4.10 RLS benchmark for 62 taps with optimization. 56

4.11 RLS benchmark for 104 taps. 57

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

vii

4.12 RLS benchmark for 104 taps with optimization. 58

5.1 Channel combiner functional illustration. 61

5.2 Channel combiner status flow chart. 69

5.3 State flow diagram for the sensor state machine. 71

5.4 Ping synchronization flow chart. 72

5.5 Watch for detection flow chart. 75

5.6 State flow diagram for the job state machine. 78

5.7 Linked list of correlator values and corresponding pointers. 84

5.8 List construction and update flow chart. 85

5.9 Sparse feedback tap calculation flow chart. 87

5.10 Sample of artificial testing demodulator (top) and correlator
(bottom) waveforms. 90

6.1 Test setup configuration. 93

6.2 Module arrangement on Morocco II for one input channel. 94

6.3 Module arrangement on Morocco II for two input channels. 95

6.4 Sample of demodulator output waveform. 97

6.5 Sample of correlator output waveform. 97

6.6 Equalization results from one input channel (no diversity). 98

6.7 Equalization results from one input channel with time diversity. 99

6.8 Equalization results from two input channels (spatial diversity). 99

6.9 Equalization results from four input channels (spatial and time
diversity). 100

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

viii

CHAPTER 1

Introduction

1.1 Background

Submarine warfare simulation exercises conducted by the Naval Undersea

Warfare Center (NUWC) have stimulated an interest in reliable underwater commu-

nication links. NUWC requires the ability to exchange data between submerged

submarines, surface ships, and seafloor hydrophone arrays in shallow water environ-

ments [1].

While acoustical signals propagate reasonably well in water, several issues

must be addressed when designing an underwater communications link. Tests

conducted for the Seaweb ’98 program [2] and NUWC [3] have revealed that

multipath signal spread is a major problem associated with underwater communi-

cations in shallow water environments. Inter-symbol interference and signal fading

are other issues that must be dealt with as well.

A study conducted by NUWC [4] has shown that a decision feedback

equalizer (DFE) coupled with a digital phase locked loop (DPLL) can compensate

for these undesired effects in underwater environments. The DPLL helps track

phase shifts that are too rapid for the DFE. The equalizer design proposed in [4]

also makes use of multiple diversity inputs to help combat problems due to channel

fading.

1.2 Purpose of the Research

The Test and Evaluation Department at the NUWC Newport Division origi-

nally developed and tested a prototype Underwater Digital Acoustic Telemetry

(UDAT) system using Texas Instruments TMS320C40 digital signal processors

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

1

[5, 1]. This thesis presents the design and implementation of an improved UDAT

system using Analog Devices SHARC processors.

NUWC’s prototype UDAT system, or modem, utilized two TMS3240C40

DSPs for each of its four functional blocks: (1) packet detection and synchro-

nization, (2) Doppler estimation and compensation, (3) complex demodulation,

and (4) equalization. The modem presented in this thesis uses a redesigned Doppler

compensation algorithm that has been combined with a redesigned complex demod-

ulation algorithm, thereby allowing the two to run on a single SHARC processor.

The packet detection and synchronization algorithms have also been redesigned,

allowing them to run real-time on a single SHARC DSP. The redesign of the

packet detection and synchronization includes two additional capabilities. First is

the ability to automatically choose equalizer parameters based on channel infor-

mation. Second is the capability to handle multiple acoustic sensors.

A special initialization sequence and manual fine tuning were required to

select equalizer parameters in NUWC’s prototype modem. That design results in

fixed equalizer parameters that may not remain optimal as the channel changes

with time. The modem described in this thesis automatically gathers channel

characteristics from the synchronization pings and uses them to periodically update

the equalizer parameters.

The modem presented in this thesis is capable of handling signals from

multiple physically separated acoustic sensors. This spatial diversity technique

can help lower error rates. Another technique known as time diversity also lowers

error rates. Time diversity requires the transmitter to repeat the message several

times (usually twice). The modem described in this thesis is capable of using both

spatial and time diversity. In contrast, the prototype modem developed by NUWC

utilized time diversity operation only.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

2

Tests of the UDAT system conducted by NUWC [5] revealed that strong

multipaths arriving several milliseconds after the main signal created problems

with equalization. Increasing the equalizer’s memory to include the late arriving

paths usually is not practical in real-time systems [5]. The equalizer used in the

modem presented in this thesis utilizes a sparse feedback section to include late

arriving signal paths without adding excessive computational complexity.

The modem implementation discussed in this thesis is expected to allow

a maximum data rate of 1800 bits/sec at a range of 2 nautical miles in shallow

water. It also has the capability to track Doppler shifts up to ±2% in order to

compensate for transmitters and receivers aboard moving submarines and ships.

1.3 Thesis Organization

Chapter 2 provides an introduction to the modules that make up the UDAT

system and shows how they are interconnected. The system’s data frame layout

is also be presented in Chapter 2. Descriptions of each module appear in greater

detail in later chapters.

In chapter 3, the front-end module is described. This module demodulates

and Doppler-compensates the incoming data. The front-end module also provides

channel information in the form of Target ID (TID) correlations.

Chapter 4 presents the implementation and benchmarking of the decision

feedback equalizer-phase locked loop (DFE-DPLL). The DFE-DPLL, or equalizer,

is used to correct for multipath channel and fading effects.

Chapter 5 discloses the channel combiner module that collects data and

channel information from one or more front-end modules. This module time aligns

the incoming data frames and submits them to an equalizer module. The channel

combiner also gathers information about the channel characteristics that are used

to configure the equalizer.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

3

Testing procedures and results used to verify proper operation of the system

are discussed in Chapter 6. This chapter also presents recommendations for future

changes and improvements.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

4

CHAPTER 2

UDAT System Overview

This chapter provides an overview of the three modules that comprise the

Underwater Digital Acoustic Telemetry (UDAT) receiver. It also introduces some

notation that will be used throughout the later chapters. A description of the data

frame format used by the UDAT receiver is also described in this chapter.

The software implementation of this receiver is implemented on Analog

Devices Super Harvard Architecture Computer (SHARC) digital signal processors.

The modular design of the software makes use of link port interconnections to

exchange data between the various modules. That design allows for flexibility in

the system configuration. The original design was constructed and tested on a

Morocco II carrier board with 8 SHARC processors [6]. Work is currently under

way to move the system to a Hammerhead platform that supports four faster

SHARC processors [7].

2.1 UDAT Receiver Modules

The UDAT receiver is comprised of one or more front-end modules, a

channel combiner module, and one or more equalizer modules. These modules

are connected as shown in Figure 2.1.

One front-end module is required for every acoustic input. Exploitation of

spatial diversity requires the use of multiple, physically separated, acoustic sensors

- each with a dedicated front-end module. Exploitation of time diversity can be

achieved with a single front-end module where repeated transmissions of the same

data helps combat time varying channel fading effects.

The equalizer modules implement the mathematical operations required to

determine and track dynamic channel characteristics. The equalizers make use of

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

5

End
Front

Front
End

Front
End

Channel
Combiner

Equalizer

Equalizer

Equalizer

Acoustic
sensor

Acoustic
sensor

Acoustic
sensor

Host

Figure 2.1: Interconnection of UDAT receiver modules.

known training data to learn the channel characteristics. Due to the numerically

intense nature of these calculations, multiple equalizers on separate processors are

supported. The clock speed of the SHARC processors along with the channel

parameters are the key factors that determine how many equalizer modules must

be used to provide real-time operation. Chapter 4 contains equalizer benchmarks

that give examples for some typical equalizer parameters. Each equalizer module

submits its demodulated data output to a host system. The host system is typically

a Unix system that is responsible for controlling and receiving data from a group

of SHARC processors.

The channel combiner module ties the multiple front-end and equalizer

modules together. It is responsible for performing time alignment of the incoming

data. The time-aligned receptions from various acoustic sensors are then submitted

as “equalizer jobs” to one of the equalizer modules. The time alignment is based

on a synchronization ping that appears at the beginning of each data packet.

That same ping and its echoes are also used to gather channel information used

to configure the equalizers.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

6

2.2 Sensor, Channel, and Job Notation

As was presented in Section 1.2, the UDAT system uses both time and/or

spatial diversity to reduce reception errors. Time diversity is implemented by

combining two transmissions of the same data into two equalizer input “channels.”

Spatial diversity involves combining receptions of the same data frame from two

physically separated “sensors” into two equalizer input “channels.” It is necessary

at this time to distinguish between “sensors” and “channels”. Sensors are physical

input devices (such as hydrophones) which provide an acoustic input to a front-

end module. The sensor outputs are demodulated and Doppler compensated by

the front end. Multiple copies of these outputs for the same transmitted data

(either from spatial or time diversity) are time aligned by the channel combiner

and submitted to an equalizer for demodulation. For a given equalizer job, each

copy of the time aligned receptions is known as a “channel”.

The equalizer’s input channels can come from any combination of time

and/or spatial diversity inputs. For example, two sensors could provide four

input channels to the equalizer when the system is operating in both time and

spatial diversity modes. Or, two sensors could provide two input channels when

operating in spatial diversity mode. Alternatively, one sensor could provide two

input channels when operating in time diversity mode.

In addition to time aligning the sensor waveforms, the channel combiner is

responsible for determining the dominant channel characteristics and passing this

information along to the equalizer. This information is stored in a structure called

an “equalizer job”. Equalizer jobs are written by the channel combiner and sent

to equalizers as described in Chapter 5.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

7

76−bit

541.33 usec/bit
DPSK Ping

SYNCH
Pulse

400 usec/symbol
QPSK Data

200
Training
Symbols

One Data "Frame" (one second)

1800 Data Symbols

100 msec 80 msec 720 msec 58 msec42 msec

Pulse
SYNCH

Figure 2.2: Format of a single telemetry data frame.

2.3 Data Frame/Modulation Format

The UDAT system transmits data in a data frame format illustrated in

Figure 2.2. Each data frame is one second long and contains the following sections.

• 42 msec target identification (TID) ping

• 100 msec quiet time

• 800 msec modulated data

• 58 msec quiet time

2.3.1 TID Ping

The data frame is initiated using a synchronization pulse consisting of a

76-bit Differential Phase Shift Keyed (DPSK) ping. The receiver, described in

Chapter 3, supports the detection of two possible “target ID” bit sequences within

this synch pulse. To be compatible with tracking ping formats currently used by

NUWC, the DPSK modulation format for the synchronization ping is different

from that of the information portion of the frame. The bit duration within the

synchronization pulse is 541.33 µsec, giving a ping duration of 41.682 msec.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

8

These TID pings are used by the channel combiner (described in Chapter

5) to time align the received data frames. These pings are also used to identify

data frame numbers when the system is operating in time diversity mode.

2.3.2 Quiet Times

The synchronization ping is followed by a 100 msec quiet time in which no

data is transmitted. The receiver utilizes this period to obtain possible multipath

delays for the channel. The channel combiner uses synchronization ping detections

within this time period to indicate the channel delays that are likely to include

significant energy for the following data. Further details of this operation appear

in Section 5.4. The channel combiner then passes this delay information on to the

equalizer.

The 58 msec quiet time at the end of the frame helps prevent echoes of one

frame from interfering with the next frame.

2.3.3 Modulated Data

The information period of the data frame consists of 2000 Quadrature

Phase Shift Keyed (QPSK) symbols, 200 “training symbols” followed by 1800 data

symbols. The training symbols are known by both the transmitter and receiver.

They are used to “train” the adaptive equalizer to “learn” the channel character-

istics. Training data is included with each data frame to allow the equalizer to

“re-learn” the channel characteristics once every second, thereby compensating for

rapidly changing channels.

The symbol duration for this portion of the frame is 400 µsec, so that the

information portion of the frame lasts a total of 800 msec. As was stated above,

this information period is broken down into training and real data sections. The

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

9

200 symbols of training data occupy the first 80 msec, while the real data occupies

the last 720 msec of this interval.

Chapter 3 presents the UDAT receiver front-end module used to receive

this specialized signal format.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

10

CHAPTER 3

Receiver Front End

This chapter describes the theory behind the receiver front-end module of

the UDAT system. It also presents details of the software implementation on the

SHARC processors.

3.1 Signal Format

In addition to the modulated data frame described in Section 2.3, the trans-

mitter sends a fixed CW “pilot tone”, which is exploited by the receiver to aid in

synchronization. The pilot tone frequency is selected as one of the nulls in the

spectrum of the QPSK information portion of the frame. For the 400 µsec symbol

duration, the null-to-null bandwidth of the QPSK signal is 5 kHz, so that the pilot

frequency is selected as 2.5 kHz above or below the QPSK carrier frequency. The

primary role of the pilot tone is to allow the receiver to cope with unknown Doppler

shifts in the modulated signal. The receiver has been designed to allow Doppler

shifts of up to ±2%, for carrier frequencies ranging from 10 kHz to 40 kHz.

3.2 Front End Tasks

The front-end module is responsible for processing samples associated with

a particular hydrophone, and delivering complex matched filter outputs to the

channel combiner, which is running on a separate processor. In particular, the

front end must perform the following tasks:

• Convert samples of the bandpass transmitted signal to a complex represen-

tation.

• Compensate for the Doppler shift of the received signal.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

11

• Detect the presence of the pilot tone, which is an indication that telemetry

data is being transmitted.

• Normalize the received waveform by the magnitude of the pilot tone, so that

a fixed amplitude received signal is delivered to the channel combiner.

• Calculate the QPSK matched filter outputs, and deliver these values to the

channel combiner.

• Find the correlation of the received waveform with two different 76-bit target

ID’s. The maximum of the two correlations and the associated target ID are

delivered to the channel combiner.

Note that although the synchronization ping correlation is performed in the

front end, the actual detection and frame alignment is performed by the channel

combiner. The receiver front end produces a continuous output stream of corre-

lation values and matched filter outputs, without any regard for the particular

data frame structure shown in Figure 2.2.

The front end output data streams are delivered to the channel combiner

at a rate of 5000 samples/sec. Each complex matched filter output symbol is

accompanied by a correlation value (indicating the larger of the two calculated

76-bit correlations), the ID associated with this maximum, and an indication of

whether the pilot tone has been detected.

3.3 Front End Overview

Figure 3.1 shows a block diagram of the receiver front-end module. The

receiver input consists of a stream of samples from an acoustic sensor using a

sample frequency of Fs = 104.4375 ksps.

The signal of interest is assumed modulated at a carrier frequency Ωc =

2πFc rad/sec, and has a null-to-null bandwidth of 5 kHz. For efficiency, bandpass

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

12

Sent to Channel
Combiner

2

2

Ωcexp(−j t)
Pilot Detected

Maximum ID

Correlation Values

Match Filter Output

5 ksps

Doppler Compensation Lowpass/Matched
Filter

Synch CorrelationLowpass Filter

5

20.8875 ksps 10 ksps

10 ksps

Input
and Resampler

104.4375 ksps

Locked to transmitter clock

Figure 3.1: Functional block diagram of the telemetry receiver front-end.

signals are manipulated within the receiver front end using a complex represen-

tation. For a real bandpass signal x(t), the complex representation is given by

x̃(t) = L.P.P.
{
x(t)e−jΩct

}
(3.1)

where the notation L.P.P.{} denotes the “low pass portion” of the signal in the

argument. The original signal x(t) can be reconstructed from x̃(t) using

x(t) = 2Re
{
x̃(t)e+jΩct

}
(3.2)

= 2|x̃(t)| cos(Ωct + 6 x̃(t)) (3.3)

The magnitude and phase of the complex representation x̃(t) provide the envelope

and phase of the corresponding bandpass signal. No information about x(t) is lost

in manipulating x̃(t), and reduced sample rates can be used to describe the complex

representation (saving computations). The mixer and lowpass filter portions of the

front end serve to extract the complex representation of the input sample sequence,

and reduce the sample frequency by a factor of five to 20.8875 ksps (complex).

Doppler shifts in the received signal cause the apparent carrier frequency

and bandwidth of the received signal to differ from the values generated by the

transmitter. The “Doppler Compensation and Resampler” block of the receiver

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

13

compensates for this effect by modifying the sample frequency implemented at the

receiver. In short, the receiver sampling frequency is adjusted until the transmitted

pilot tone is phase-locked to a locally generated pilot tone at the appropriate

frequency. This procedure effectively locks the receiver sample rate to that of the

transmitter. Since Doppler compensation requires resampling of the input signal,

it is straightforward to also implement an additional decimation by a factor of

(approximately) 2 within this stage. This relaxes the requirements of the first

decimation filter, saving computations. Doppler compensation implementation

using the complex representations are presented in Section 3.5.

The output of the Doppler Compensation block is a stream of complex

samples at sample rate of 10 ksps. A lowpass filter is used to limit the bandwidth

of this signal to approximately 2.5 kHz to avoid aliasing in the final decimation

stage. The QPSK matched filter output for a given time index involves summing

the filter outputs over the most recent four samples (400 µsec). This operation is

combined with the calculation of the lowpass filter output, so that a single filter is

used to implement both the lowpass and matched filter operations. This sequence

is then decimated (by 2) to form the “Matched Filter Output” that is provided to

the channel combiner.

“Synch Correlation” outputs of the receiver front end provide data frame

synchronization. The matched filter outputs are correlated with the known bit

sequences for the possible synchronization pings. Since phase ambiguity exists

between the transmit and receive clocks, the magnitude of the (complex) corre-

lation is used to detect the presence of the synchronization ping. Correlation values

are calculated for every other matched filter output, giving an output sample rate

of 5 ksps. For each output sample, the maximum correlation value is reported,

along with the ping ID associated with the maximum.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

14

The following sections provide additional details regarding the design and

implementation of the individual components of the receiver front-end module.

3.4 Calculation of the Complex Representation

The complex representation of the input signal is given in equation (3.1).

Samples of the complex representation are calculated from the sequence of input

samples by filtering the signal x(kTs)e
−jΩckTs , where Ts = 1/Fs. Values of the

exponential can be calculated recursively by setting

e0 = 1 (3.4)

ek = ek−1 exp(−jΩcTs) k = 1, 2, . . . (3.5)

= e−jΩckTs (3.6)

The transcendental function exp(−jΩcTs) can be evaluated once, so that calcu-

lation of the exponential portion of the sequence involves a single complex multi-

plication. The sequence ekx(kTs) must then be filtered to produce samples of

x̃(t).

The null-to-null spectrum of x(t) occupies the band Fc − 2.5 kHz to Fc +

2.5 kHz. Doppler shifts may shift the apparent frequency at the receiver by up

to ±2%, so that for a carrier frequency of Fc = 40 kHz, the band of interest

occupies roughly Fc ± 3.3 kHz. The lowpass filter used to create x̃(t) must pass

frequencies below 3.3 kHz. To reduce the sample rate by a factor of five to 20.08875

kHz, the filter must eliminate frequencies within 3.3 kHz of 20.08875 kHz to avoid

the undesired signal from aliasing into the band of interest. A 25 coefficient FIR

lowpass filter was designed to provide 80 dB of stopband rejection. The magnitude

response of the filter is shown in Figure 3.2.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

15

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

F
ilt

er
 G

ai
n

(d
B

)

Frequency

Figure 3.2: Magnitude response of the first FIR decimation filter, used to reduce
the sample rate by a factor of five.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

16

Pilot Tone
Filter

Comparison
Phase

Reference
Oscilator

Resampler
Input

tk

x̃(kTx) p̃(tk)p̃(kTx)

x̃(tk) = y(kTy)

Figure 3.3: Block diagram of the Doppler compensator and resampler.

3.5 Doppler Tracking

Figure 3.3 provides a conceptual block diagram of the Doppler compen-

sation and resampler portion of the receiver front-end module. The system exploits

the presence of a pilot-tone at one of the QPSK spectral nulls to lock the sampling

frequency to that used in the transmitter. The complex input for the compensator

consists of samples of x̃(t) at sample frequency Fx = Fs/5 = 20.08875 kHz. This

signal is filtered to extract the pilot-tone portion of the signal. (The filter is not

strictly required, and the development described in this section does not assume

that the pilot tone has been separated from the modulation. However, marginal

performance improvements were realized when the filter was included, particularly

for low pilot tone amplitudes. As a result, the pilot tone filter was included in the

final implementation.)

The resampler allows calculation of the values of x̃(t) or p̃(t) at times that

are not multiples of the input sample period Tx = 1/Fx. The resampler imple-

mented in this receiver is capable of calculating values of these signals with approx-

imately 1 µsec granularity in the sample time. (Note that changing the sample

rate for the complex representation is slightly more complicated than interpolating

the input signals, since the value of Ts used in (3.5) must also be modified—see

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

17

Section 3.5.3.) The goal of the Doppler compensation section is to generate a

sequence of input sample times tk so that the output signal sample rate is Fy = 10

ksps, locked to the transmitter clock. To accomplish this, the pilot-tone portion of

the transmitted signal is compared to a locally generated pilot tone. Phase errors

between the two signals are used to adjust the sampling clock.

The remainder of this section gives the mathematical development needed

to implement the resampler and Doppler compensation.

3.5.1 Complex Representations of Bandpass Signals

To develop the Doppler tracking algorithm, this subsection reviews the

complex representation notation used in this thesis, and gives a few examples of

signals that will prove useful. Let x(t) denote a bandpass signal of interest with

center frequency Ωc rad/s and bandwidth B Hz. The complex representation of

x(t) given by (3.1) is restated here

x̃(t) = L.P.P.
{
x(t)e−jΩct

}
. (3.7)

The original signal x(t) can be reconstructed from x̃(t) using

x(t) = 2Re
{
x̃(t)e+jΩct

}
(3.8)

= 2|x̃(t)| cos(Ωct + 6 x̃(t)) (3.9)

. .

Example 3.5.1 (Pure cosine)

For x(t) = A cos(Ω1t), we have

x̃(t) =
A

2
exp (j(Ω1 − Ωc)t) . (3.10)

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

18

. .

Example 3.5.2 (Doppler Shifted cosine)

Let p(t) denote a transmitted “pilot tone” A cos(Ωpt). The received signal x(t)

contains a Doppler shifted tone at frequency DΩp, where D is a constant close to

1. Then

x(t) = p(Dt) = A cos(ΩpDt) (3.11)

x̃(t) =
A

2
exp (j(ΩpD − Ωc)t) (3.12)

. .

Example 3.5.3 (Time Varying Doppler Shifted cosine)

Example 3.5.2 may be extended by assuming that the Doppler shift is time-varying.

This is represented mathematically by

x(t) = p

(∫ t

0

D(λ)dλ

)
= A cos

(
Ωp

∫ t

0

D(λ)dλ

)
(3.13)

This gives

x̃(t) =
A

2
exp

(
jΩp

∫ t

0

D(λ)dλ− jΩct

)
. (3.14)

3.5.2 Time Scaling of Signals

In our implementation, timescaling the signal x(t) compensates for the

Doppler shift. For a constant Doppler shift factor D, it is desired to create the

signal

y(t) = x(t/δ) (3.15)

where δ is close to D (δ will represent our estimate of the unknown factor D at a

given time). To implement the time scaling, we develop the relationships between

the complex representations of x(t) and y(t). The complex representation of y(t)

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

19

is

ỹ(t) = L.P.P.
{
x(t/δ)e−jΩct

}
(3.16)

= L.P.P.
{
x(t/δ)e−jΩc(t/δ)e−jΩc(t−t/δ)

}
. (3.17)

For δ close to 1 (the usual case), the second exponential term of (3.17) is a low

frequency term and does not alter the portion of the spectrum selected by the

L.P.P. operator. We then obtain

ỹ(t) = L.P.P.
{
x(t/δ)e−jΩc(t/δ)

}
e−jΩc(t−t/δ) (3.18)

= x̃(t/δ)e−jΩc(t−t/δ). (3.19)

One can readily observe that the complex representation of y(t) cannot be

obtained by simply time scaling the signal x̃(t). The exponential factor in (3.19)

is required to obtain ỹ(t) for the desired center frequency Ωc.

3.5.3 Nonuniform Sampling of x(t)

Note that the development in Section 3.5.2 assumed a constant time-scale

factor. In our implementation the scale factor must be adjusted to track a changing

Doppler shift factor. To do so, define the samples of y(t) in terms of the (unequally

spaced) samples of x(t):

y(kTy) = x(tk). (3.20)

Repeating the development of Section 3.5.2 gives

ỹ(kTy) = x̃(tk)e
−jΩc(kTy−tk). (3.21)

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

20

Equation (3.21) will be used extensively. The goal is to determine time sample

values tk so that the signal ỹ(kTy) contains the pilot tone at the expected frequency.

Under this condition, the nonuniform sampler has successfully compensated for the

time-varying Doppler shift on the input signal.

In (3.21), tk denotes the time values used to sample x(t). For Doppler shift

factors close to 1, the time step values will be close to Ty, giving tk+1 − tk ≈ Ty.

We define ∆k as being the correction factor for the kth sample giving the actual

sample separation:

tk+1 = tk + (1 + ∆k)Ty. (3.22)

∆k is the (small) deviation in the sample step size from the kth sample to the

k + 1st sample. For Doppler shifts of up to ±2%, the magnitude of ∆k should

remain below 0.02. Given the values of ∆k, the time sample values are given by

tk = kTy +
k−1∑
`=0

∆`Ty (3.23)

. .

Example 3.5.4 (Sampling of the Pilot Tone)

Sampling the time-varying Doppler shifted signal from Example 3.5.3 as indicated

above gives

ỹ(kTy) =
A

2
exp

(
jΩp

∫ tk

0

D(λ)dλ− jΩctk

)
e−jΩc(kTy−tk) (3.24)

=
A

2
exp

(
jΩp

∫ tk

0

D(λ)dλ− jΩckTy

)
(3.25)

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

21

Let Dk = 1 − dk denote the average (unknown) Doppler shift factor for tk < t <

tk+1.

ỹ(kTy) =
A

2
exp

(
jΩp

k−1∑
`=0

(Ty(1 + ∆`)D`)− jΩckTy

)
(3.26)

=
A

2
exp

(
jTyΩp

k−1∑
`=0

(1 + ∆`)(1− d`)− jΩckTy

)
(3.27)

Note that ∆` and d` are generally small (< 0.02). In our case, d` represents

a system input—it is the actual Doppler shift at the kth sample. We wish to

determine ∆` such that (1+∆`)(1−d`) ≈ 1, so that ỹ(kTy) will represent the pilot

tone at the (known) pilot frequency.

3.5.4 A Phase Locked Loop to Adjust the Sample Rate

To determine ∆` so that y(kTy) contains the expected pilot tone at the

appropriate frequency, the following strategy is adopted:

1. measure the phase error between ỹ(kTy) and the desired exp(j(Ωp−Ωc)kTy))

terms.

2. Filter this result and adjust ∆` to keep this phase error small.

Figure 3.4 shows a phase-locked loop structure designed to accomplish these tasks.

To analyze the loop, each block is considered separately. The nonuniform sampler

described by (3.27) shows how changes in the Doppler shift dk or the loop output

∆k effect ỹ(kTy). The loop filter will be denoted

HL(z) =
B(z)

A(z)
. (3.28)

where B(z) and A(z) are polynomials. These polynomials must be properly

selected to ensure the stability of the PLL.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

22

Loop
Filter

Phase
Detector

Sample Rate Control
Nonuniform

Sampler

∆k

Doppler Compensated
Sampled Output Signal

ỹ(kTs)

x̃(t)

ỹ(kTs)

exp(j(Ωp − Ωc)kTs)

Figure 3.4: Complex representation of the phase-locked loop used for Doppler
tracking.

The phase detector measures the phase difference between ỹ(kTy) and the

desired exp(j(Ωp − Ωc)kTy terms. In implementation, we calculate

γ̃(kTy) = ỹ(kTy) exp(−j(Ωp − Ωc)kTy) (3.29)

The phase difference is then approximated (for small phase errors, while the loop

is locked) by the imaginary part of the normalized γ̃(kTy):

φ(kTy) = Im

(
γ̃(kTy)

|γ̃(kTy)|

)
(3.30)

We can now obtain the closed-loop behavior of the PLL. Substituting (3.27)

into (3.29) gives

γ̃(kTy) =
A

2
exp

(
jTyΩp

k−1∑
`=0

[(1 + ∆`)(1− d`)− 1]

)
(3.31)

The phase detector output is then

φ(kTy) ≈ TyΩp

k−1∑
`=0

[(1 + ∆`)(1− d`)− 1] (3.32)

= TyΩp

k−1∑
`=0

(∆` − d` − d`∆`) (3.33)

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

23

φ(z)
ΩpTsz−1

1−z−1 HL(z) = B(z)
A(z)

∆(z)d(z)

Figure 3.5: Frequency-domain representation of the (linearized) phase-locked loop.

The cross-product term d`∆` does not significantly influence the behavior of the

loop since ∆` and d` are both small. This term is dropped from the analysis, giving

φ(kTy) ≈ ΩpTy

k−1∑
`=0

(∆` − d`) (3.34)

In difference equation form, we have

φ(kTy) = φ((k − 1)Ty) + ΩpTy(∆k−1 − dk−1). (3.35)

Taking the z-transform of this result gives a frequency domain description of the

phase detector combined with the nonuniform sampler:

φ(z) = (ΩpTy)
z−1

1− z−1
(∆(z)− d(z)). (3.36)

Figure 3.5 gives a frequency domain depiction of the linearized phase-locked loop

just developed. The linearized model shows how external changes in the Doppler

shift of the sampled signal (dk) are tracked by the sampler. Successful loop

operation is indicated by small values of φ(kTy) (small phase errors). The closed-

loop transfer function from the Doppler disturbance to the phase error is given by

φ(z)

d(z)
=

−ΩpTyA(z)

(z − 1)A(z)− ΩpTyB(z)
(3.37)

The loop filter polynomials A(z) and B(z) should be selected to make this small

at low input frequencies (near z = 1). A second transfer function of interest is the

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

24

relationship between dk and ∆k. The closed-loop relationship is given by

∆(z)

d(z)
=

−ΩpTyB(z)

(z − 1)A(z)− ΩpTyB(z)
(3.38)

This filter should be lowpass in nature, so that the (relatively low frequency)

changes in dk are accurately tracked by the loop, while portions of the re-sampled

signal not near the pilot tone frequency are rejected.

3.5.4.1 Selection of Loop Filter Coefficients

Selection of the loop filter coefficients was largely a trial and error process.

The following constraints are observed:

1. The loop must be stable. Given the poles and zeros of HL(z), the gain of

the filter may be modified while monitoring the magnitudes of the roots of

(z − 1)A(z) − ΩpTyB(z). Gain values are identified so that these roots lie

within the unit circle under all expected values of ΩpTy.

2. The steady-state phase error must be reasonable. The phase detector given

in (3.30) is based on an assumption that the phase error will be small. Phase

errors above ±π/2 violate the linearity assumptions used in the approxi-

mation given in (3.32). The nonlinearity will cause the loop to loose lock.

The steady-state phase error for a constant Doppler shift factor Dss = 1−dss

is obtained from the DC gain of the closed-loop response

φss =

(
φ(z)

d(z)

∣∣∣∣
z=ej0=1

)
dss (3.39)

=
1

HL(1)
dss (3.40)

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

25

For example, to obtain a maximum phase error of ±π/3 for a maximum

Doppler shift of 2% (dss = 0.02) gives the requirement

π

3
≥ 0.02

|HL(1)|
(3.41)

To meet this requirement, the DC gain of the loop filter must exceed -34 dB.

3. The roots of A(z) are selected close to z = 1, making HL(z) lowpass and

making φ(z)
d(z)

small near z = 1.

4. The roots of B(z) are selected near the unit circle to control the bandwidth

of ∆(z)
d(z)

. This transfer function should be lowpass, with bandwidth sufficient

to pass the Doppler drift frequencies, but narrow enough to reject any other

modulation present in the signal.

3.5.4.2 Doppler Tracking PLL Summary

For further reference, the iterative Doppler tracking PLL is summarized by

the equations (3.42) to (3.46), which are restated from the above development.

• Nonuniform Sampler

tk = tk−1 + (1 + ∆k−1)Ty (3.42)

ỹ(kTy) = x̃(tk) exp {−jΩc(kTy − tk)} . (3.43)

• Phase Detector

γ̃(kTy) = ỹ(kTy) exp(−j(Ωp − Ωc)kTy) (3.44)

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

26

φ(kTy) = Im

(
γ̃(kTy)

|γ̃(kTy)|

)
(3.45)

• Loop Filter

HL(z) =
B(z)

A(z)
=

b0 + b1z
−1 + · · ·+ bnz

−n

1 + a1z−1 + · · ·+ anz−n

∆k =
n∑

i=0

biφ((k − i)Ty)−
n∑

i=1

ai∆k−i (3.46)

3.5.5 Nonuniform Sampler Implementation

Assume that samples of x̃(t) are available at sample frequency Fx samples

per second, and sample period Tx = 1/Fx. That is, x̃(t) has been uniformly

sampled, and x̃(`Tx) is known. To implement the nonuniform sampler required by

(3.43), samples between times `Tx can be calculated using polyphase interpolators.

For an interpolation rate of I, samples at time `Tx + m(Tx/I) can be obtained as

follows:

1. Design a lowpass FIR filter at sample rate IFx that passes the desired

signal band and rejects (at least) frequencies above Fy − B, where Fy is

the desired output sample rate for ỹ(t) (possibly different from Fx) and B is

the bandwidth of x̃(t). Select the number of filter coefficients as a multiple of

I. Let h(k) denote the impulse response of this filter (k = 0, 1, . . . ,MI − 1).

2. The set of I polyphase filters are designed by decimating h(k). The impulse

response of the mth filter is

pm(j) = h(m + jI) m = 0, 1, . . . , I − 1 j = 0, 1, . . . ,M − 1 (3.47)

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

27

3. To evaluate x̃(`Tx +mTx/I), use the mth polyphase filter at time origin `Tx:

x̃(`Tx + mTx/I) =
M−1∑
j=0

pm(j)x̃((`− j)Tx) (3.48)

=
M−1∑
j=0

h(m + jI)x̃((`− j)Tx) (3.49)

To evaluate x̃(tk) as required in (3.43), tk is rounded to a close time value

of the form `kTx +mkTx/I. The required values of `k and mk are found recursively.

Assume that the tk−1 value is known by

tk−1 = `k−1Tx + rk−1Tx 0 ≤ rk−1 < 1. (3.50)

From (3.42) the next time sample is

tk = tk−1 + (1 + ∆k−1)Ty (3.51)

= tk−1 +

(
(1 + ∆k−1)

Ty

Tx

)
Tx (3.52)

= `k−1Tx +

(
rk−1 + (1 + ∆k−1)

Ty

Tx

)
Tx (3.53)

The term in parenthesis in (3.53) can be broken into its integer and fractional part,

giving the desired step sizes:

(
rk−1 + (1 + ∆k−1)

Ty

Tx

)
= ∆`k + rk, 0 ≤ rk < 1. (3.54)

tk = (`k−1 + ∆`k)Tx + (rkI) Tx/I (3.55)

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

28

The required values of `k−1 and mk−1 to evaluate (3.49) are given by setting

`k = `k−1 + ∆`k (3.56)

mk = brkIc (3.57)

where

∆`k =

⌊(
rk−1 + (1 + ∆k−1)

Ty

Tx

)⌋
(3.58)

rk =

(
rk−1 + (1 + ∆k−1)

Ty

Tx

)
−∆`k (3.59)

and b·c denotes rounding down to the nearest integer.

Evaluation of ỹ(kTy) in (3.43) also requires an exponential phase correction

term. The exponential evaluation may be avoided in the polyphase filter case as

follows. Substituting tk = `kTx + mk(Tx/I) into (3.43) gives

ỹ(kTy) = x̃(tk) exp {−jΩc(kTy − `kTx)} exp {+jΩcTxmk/I} (3.60)

The value of the second exponential in (3.60) can be obtained from a lookup table,

since there are only I possible values of mk. The value of the middle exponential

term may be calculated recursively. Let ck denote the value of this correction term

for the kth sample:

ck = exp {−jΩc(kTy − `kTx)} (3.61)

Using the update equations for `k gives

ck = exp {−jΩc((k − 1)Ty − `k−1Tx)} exp {−jΩc(Ty −∆`kTx)} (3.62)

= ck−1 exp {−jΩc(Ty −∆`kTx)} (3.63)

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

29

The exponential term of (3.63) can also be tabulated, since (for small Doppler

shifts) only a few values of ∆`k are possible.

The nonuniform sampler given in (3.43) is implemented by using (3.56)

through (3.59) to find `k, mk, and ∆`k. These values are used to approximate

x̃(tk) using (3.49). The integer ∆`k is used to obtain ck as in (3.63) (where the

exponential factor is obtained from a table). The Doppler corrected output sample

is then obtained from

ỹ(kTy) = x̃(tk)ck exp {jΩcTxmk/I} (3.64)

where again the exponential term is found from an I-element table indexed by the

value of mk.

3.5.6 Filter Designs

A 6th order elliptical highpass filter was used to implement the pilot tone

filter shown in Figure 3.3. The filter passband includes frequencies above 1.7 kHz

(the lower limit for the Doppler shifted pilot tone location). This filter, combined

with the lowpass filter implemented within the resampler, serves to isolate the

pilot tone from the bulk of the modulated signal. The filter was implemented as a

cascade of three second-order sections. The filter allows 0.3 dB of passband ripple,

and attenuates the stopband by 40 dB. A plot of the filter characteristic is shown

in Figure 3.6.

The polyphase interpolator used to implement the resampler is based on

an interpolation rate of I = 50, giving an oversampled sampling frequency of

50Fx = 1044.375 ksps. The filter design described in Step 1 of Section 3.5.5 was

accomplished using a 800-coefficient FIR filter with 80 dB of stopband rejection.

The magnitude response of this interpolation filter is illustrated in Figure 3.7.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

30

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−50

−40

−30

−20

−10

0

10

F
ilt

er
 G

ai
n

(d
B

)

Frequency

Figure 3.6: Magnitude response of the 6th order elliptical pilot tone filter.

The filter impulse response was decimated as described in (3.47) to give a set of

50 separate 15-coefficient polyphase filters. Calculation of each resampled output

value involves finding the output of one of these 15-coefficient FIR filters.

3.6 Lowpass and Matched Filters

The output lowpass filter illustrated in Figure 3.3 is required to avoid

aliasing when the sample rate is reduced to 5 ksps. This filter was designed to pass

frequencies below 2.2 kHz, and reject frequencies above 2.8 kHz. Figure 3.8 shows

a plot of the magnitude response of this filter, obtained using a 40-coefficient FIR

filter. In implementation, this filter is combined with the QPSK matched filter by

convolving the designed impulse response with the impulse response of the matched

filter (a sequence of four 1’s). The resulting combined lowpass and matched filter

is a 43-coefficient FIR filter. Note that although the magnitude response shown in

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

31

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

−80

−60

−40

−20

0

F
ilt

er
 G

ai
n

(d
B

)

Frequency

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

−80

−60

−40

−20

0

F
ilt

er
 G

ai
n

(d
B

)

Frequency

Figure 3.7: Magnitude response of the 800-coefficient FIR interpolation filter used
to implement the resampler.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

32

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

F
ilt

er
 G

ai
n

(d
B

)

Frequency

Figure 3.8: Magnitude response of the output FIR anti-aliasing filter.

Figure 3.8 shows less than 70 dB of stopband rejection, the combined magnitude

response of the lowpass and matched filter does have more than 80 dB rejection

throughout the stopband.

The Lowpass/matched filter outputs are then decimated by a factor of two,

giving an output data stream of 5 ksps that is delivered to the channel combiner.

The decimation is not implemented as a part of the lowpass/matched filter, since

the 10 ksps output is required for accurate implementation of the ping synchro-

nization correlator.

3.7 Frame Synch Ping Correlation

The frame-synchronization ping consists of a Nb = 76-bit Differential Phase

Shift Keyed (DPSK) modulated ping (or equivalently, a 77-bit BPSK ping). The

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

33

ping may be described by

p(t) =

Nb∑
k=0

bkp0(t− kTb) (3.65)

where bk = ±1 indicates the transmitted bit, Tb = 541.33 µsec is the bit period,

and p0(t) describes the transmitted waveform for each bit.

p0(t) =

 sin(Ωct) 0 ≤ t ≤ Tb

0 elsewhere
(3.66)

Note that (3.66) describes a “phase jammed” signal, in which the phase of the

transmitted signal is reset for each transmitted bit. The complex representation

of p0(t) is given by

p̃0(t) = −(j/2)w(t) (3.67)

w(t) =

 1 0 ≤ t ≤ Tb

0 elsewhere
(3.68)

The complex representation for a frame synchronization ping that occurs at t = 0

is

p̃(t) =

Nb∑
k=0

bk(−j/2)w(t− kTb)e
−jΩckTb . (3.69)

The desired correlator output for a received signal s(t) is given by

c(t) =

∫ t+(Nb+1)Tb

t

s(λ)p(λ− t)dλ. (3.70)

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

34

Substituting (3.3) into this expression gives the result in terms of the magnitude

and phase of the complex representations

c(t) =

∫ t+(Nb+1)Tb

t

4|s̃(λ)||p̃(λ− t)|
(

1

2
cos(6 s̃(λ)− 6 p̃(λ− t) + Ωct)

+
1

2
cos(6 s̃(λ) + 6 p̃(λ− t) + Ωct + Ωcλ)

)
dλ. (3.71)

The second cosine is a high frequency term with an integral that is approximately

zero (and equals zero for the ideal case in which there are an integer number of

cycles in each bit period). This term is dropped from the integration giving

c(t) =

∫ t+(Nb+1)Tb

t

2Re
{
s̃(λ)p̃∗(λ− t)ejΩct

}
dλ. (3.72)

= 2Re

{(∫ t+(Nb+1)Tb

t

s̃(λ)p̃∗(λ− t)dλ

)
ejΩct

}
. (3.73)

The ejΩct term reflects the phase alignment of the correlation period. Comparing

this result to (3.2) gives the desired complex representation of the correlator output

c̃(t) =

∫ t+(Nb+1)Tb

t

s̃(λ)p̃∗(λ− t)dλ (3.74)

Frame synchronization is obtained by comparing the envelope of c(t) to a threshold,

or equivalently the value of 2|c̃(t)|. The correlator output for the receiver front end

are the actual calculated values of (2|c̃(t)|)2.

The matched filter calculation that has already been completed can be

exploited in the evaluation of the above integral. Breaking the integration into

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

35

intervals of length Tb seconds gives

c̃(t) =

Nb∑
k=0

∫ t+(k+1)Tb

t+kTb

s̃(λ)b∗k(j/2)ejΩckTbdλ (3.75)

=

Nb∑
k=0

b∗k(j/2)ejΩckTb

∫ t+(k+1)Tb

t+kTb

s̃(λ)dλ (3.76)

The (j/2) term may be dropped from this expression, since the correlator output

used for frame synchronization is (2|c̃(t)|)2.

correlator output =

∣∣∣∣∣
Nb∑
k=0

b∗ke
jΩckTb

∫ t+(k+1)Tb

t+kTb

s̃(λ)dλ

∣∣∣∣∣
2

(3.77)

The matched filter outputs provide signal integration over a 400 µsec period,

which is slightly less than the 541.33 µsec bit period used in (3.77). Ideally,

synchronization ping correlation would be performed by integrating the input

signal over the entire 541.33 µsec period, multiplying these results by ±ejΩckTb

depending upon the bit sequence (bk), and summing these results over the entire 42

msec ping duration. In this implementation, the 10 ksps input sample rate implies

that each transmitted bit is represented by a non-integer number of samples, and

it is difficult to perform the integration over an exact bit period. Instead, the

implementation uses the matched filter outputs that have already been calculated.

This saves computations, and reduces the sensitivity to the imperfect bit-edge

alignment caused by the non-integral relationship between the sample period and

the bit duration. The resulting algorithm is expected to perform about 1 dB worse

than a more optimal algorithm that integrates over an entire bit period.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

36

CHAPTER 4

Adaptive Feedback Equalizer

This chapter describes the UDAT system’s equalizer module. This module

consists of a front-end interface to the channel combiner module and a Recursive

Least Squares (RLS) equalizer.

Studies conducted by NUWC [4] have shown that an adaptive decision

feedback equalizer-digital phase locked loop (DFE-DPLL) works very well in terms

of reducing multipath effects, time varying inter-symbol interference, and channel

fading inherent in underwater environments. MATLAB prototypes of this equalizer

were written by Dr. Nixon A. Pendergrass, Susan M. Jarvis, and Fletcher Blackmon

at NUWC using both RLS and Fast Transversal Filters (FTF) weight update

algorithms.

Using the RLS algorithm to update the equalizer’s filter weights is relatively

computationally intensive. It is on the order of N2 where N is the length of

the weight vector (Equation 4.3). The FTF algorithm on the other hand is

more computationally efficient (on the order of N). However, since this is a

prototype system being developed for the first time on SHARC processors it was

decided to start by implementing the equalizer with an RLS algorithm. The

straightforward nature of the RLS algorithm simplified the task of translating

the MATLAB equalizer code into a C version for the SHARC processors. It was

also expected that the increased processing power of the SHARC processors (as

compared to the C40 processors used in [1]) might be sufficient to handle the

increased computational burden of the RLS algorithm.

Discussion of the equalizer will begin by introducing the notation and

presenting the basics of the implemented algorithm. Next, key operations of the C

language implementation of the equalizer will be discussed and compared to their

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

37

MATLAB equivalents. Finally, a series of benchmarks will be presented to show

the equalizer’s calculation times for some typical tap weight counts.

4.1 General Equalizer Algorithm Overview

A block diagram of this diversity input adaptive DFE-DPLL is shown in

Figure 4.1. Note that this is the same equalizer presented in [4] except for the

addition of the sparse feedback sections (detailed in Figure 4.3).

Both the MATLAB and C implementations of this adaptive equalizer use

the following notation:

• n is the symbol counter

• training is the training symbol counter

• v is a matrix with columns of input data for each channel

• L, M , and M2 are the number of feedforward, feedback, and sparse feedback

tap weights respectively

• M2OFF is a vector of sparse feedback tap locations

• R is the number of diversity inputs (channels)

• ã, b̃, and b̃2 are the feedforward, feedback, and sparse feedback tap weight

vectors respectively

• p(n), q(n), and q2(n) are the contributions of the feedforward, feedback, and

sparse feedback sections respectively

• W̃ (n) is the weight vector formed from ã, b̃, and b̃2 (Equation 4.8)

• Ũ(n) is the input vector shown in Equation 4.8

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

38

• R is the correlation matrix

• d(n) and dbit(n) are the estimates and bit decisions for symbol n

One important fact to note is the difference in orientation between the C and

MATLAB matrices. The reasons for this will be discussed further in Section 4.2.1.

Figures 4.2, 4.3, and 4.4 show the internals of the DFE-DPLL’s rth diversity

feedforward section as well as the non-sparse and sparse feedback sections respec-

tively.

A digital phase-locked loop is used to provide the phase correction term,

Θr(n) as shown in Figure 4.2. The loop for the rth diversity input is described by

Θr(n + 1) = Θr(n) + K1 · φr(n) + K2 ·
n∑

i=0

φr(i), (4.1)

where φr(i) = ={pr(n)[
∑R

r=1 pr(n) + ε(n)]∗}, and K1 and K2 are constants that

govern the loop’s tracking characteristics [4].

The received symbol estimate can be written as

d(n) =
R∑

r=1

T∑
i=−T

a∗r,i(n) · e−jΘr(n) · vr(2n− i)

−
M∑
`=1

b∗`(n) · dbit(n− `)

−
SP∑

sp=1

M2(sp)∑
`=1

b2∗sp,`(n) · dbit(n−M2OFF (sp)− `), (4.2)

where R is the number of diversity inputs, L = 2T +1 is the number of tap weights

in each feedforward section, M is the number of tap weights in the feedback section,

and M2(sp) are the numbers of taps in each of the SP sparse feedback sections.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

39

−

Training
Signal

Decision
Rule

Feedback
Section

Sparse
Feedback
Section SP

Sparse
Feedback
Section 1

Input 1 Feedforward
Section 1

Input r Feedforward
Section r

Input R Feedforward
Section R

Output

Error Signal

+

+

dbit(n)

dref (n)

pR(n)

v1

vr

vR

ε(n)

pr(n)

p1(n)

d(n)

q(n)

q2SP (n)

q21(n)

Figure 4.1: Block diagram of the decision feedback equalizer - digital phase locked
loop (DFE-DPLL).

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

40

Input r

x

x

x

x

x

x

x

+

x

z−1

z−1

z−1

z−1

vr(2n)

vr(2n + 1)

vr(2n− 1)

vr(2n + T)

vr(2n− T)

a∗r,T (n)

a∗r,T−1(n)

a∗r,1(n)

a∗r,0(n)

a∗r,−1(n)

a∗r,−T (n)

e−jΘr(n) pr(n)

T = (L− 1)/2

a∗r,−T+1(n)

vr

Figure 4.2: Block diagram of the rth diversity feedforward section of the DFE-
DPLL.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

41

x

x

x

+

z−1

z−1

z−1
−b∗M(n)

−b∗M−1(n)

−b∗1(n)

dbit(n)

dbit(n−M)

dbit(n− 1)

q(n)

Figure 4.3: Block diagram of the non-sparse feedback section of the DFE-DPLL.

x

x

x

+−b2∗sp,M2(sp)(n)

−b2∗sp,M2(sp)−1(n)

dbit(n)

dbit(n−M2OFF (sp)−M2(sp))

dbit(n−M2OFF (sp))

q2sp(n)

z−1

z−1

−b2∗sp,1(n)z−M2OFF (sp)

Figure 4.4: Block diagram of the spth sparse feedback section of the DFE-DPLL.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

42

The total number of tap weights is given by

N = L ·R + M +
SP∑

sp=1

M2(sp). (4.3)

In order to eliminate recalculating values in the z−1 delay lines, column

vectors ṽr(n) are used to store the 2n + T through 2n− T values of vr for each of

the R diversity inputs. Values in each ṽr(n) vector are shifted down each time a new

input sample is added. Similarly, a vector d̃(n) is used to store the n− 1 through

n−M samples of dbit for use in the feedback section. And column vectors d̃2sp(n)

are used to store the n−M2OFF (sp)−1 through n−M2OFF (sp)−M2(sp) values

of dbit for use in each of the sparse feedback sections. These coefficient vectors are

shown in Equation 4.4. The corresponding weight vectors are also stored in column

vectors as shown in Equation 4.5.

ṽr(n) =

vr(2n + T)

...

vr(2n)

...

vr(2n− T)

d̃(n) =

dbit(n− 1)

...

dbit(n−M)

d̃2sp(n) =

dbit(n−M2OFF (sp)

...

dbit(n−M2OFF (sp)−M2(sp))

 (4.4)

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

43

ãr(n) =

ar,T (n)

...

ar,0(n)

...

ar,−T (n)

b̃(n) =

−b1(n)

...

−bM(n)

 b̃2sp(n) =

−b2sp,1(n)

...

−b2sp,M2(sp)(n)

(4.5)

Equations 4.4 and 4.5 allow Equation 4.2 to be written as

d(n) =
R∑

r=1

ãH
r · ṽr(n) + b̃H(n) · d̃(n) +

SP∑
sp=1

b̃2
H

sp(n) · d̃2sp(n)

=
R∑

r=1

pr(n) + q(n) +
SP∑

sp=1

q2(n) (4.6)

Equation 4.2 can also be written in terms of the entire W̃ (n) weight vector as

d(n) = W̃H(n) · Ũ(n) (4.7)

where

W̃ (n) =

ã1(n)

...

ãR(n)

b̃(n)

b̃21(n)

...

b̃2SP (n)

Ũ(n) =

ṽ1(n) · e−jΘ1(n)

...

ṽR(n) · e−jΘR(n)

d̃(n)

d̃21(n)

...

d̃2SP (n)

(4.8)

In Equation 4.7, W̃ (n) represents the vector of all filter coefficients used in the

various systems shown in Figures 4.2, 4.3, and 4.4. To track changing channel

conditions, this vector must be modified while the receiver is operating. The

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

44

value of the error signal, ε(n), shown in Figure 4.1 is used to drive this adaptive

process. A standard RLS algorithm was implemented to accomplish this task. The

algorithm is described by Equations 4.9 through 4.12 where R−1 is the inverse of

the correlation matrix and λ is the forgetting factor.

P̃ (n) = R−1 · Ũ(n) (4.9)

α = <
{

1

λ + Ũ(n)H · P̃ (n)

}
(4.10)

W̃ (n) = W̃ (n) + α · ε(n) · P̃ (n) (4.11)

R−1 =
R−1 − α · P̃ (n) · P̃H(n)

λ
(4.12)

Following the weight update, the contributions of the feedforward, feedback,

and sparse feedback sections are recalculated using Equation 4.6. The decision rule

shown in Figure 4.1 makes a bit decision using

dbit(n) = sign(<{d(n)}) + j · sign(={d(n)}) (4.13)

If the equalizer is still in training mode (first 200 symbols) the error is calculated

using ε(n) = dref (n) − d(n) where dref is a known reference symbol. However,

if the equalizer is in decision directed mode the error is calculated using ε(n) =

dbit(n)− d(n).

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

45

To summarize, the equalizer algorithm operates in the following manner:

• Initialize counters, data, and weight vectors.

• Initialize the inverse of the correlation matrix, R−1, to an identity matrix

multiplied by a small scalar.

• For each QPSK symbol in the data frame, perform the following:

– Shift and add new data to the data vectors shown in Equation 4.4.

– Update the Ũ(n) vector as shown in Equation 4.8.

– Calculate the output, d(n), using the current weights.

– Form a temporary bit decision (Equation 4.13 and use it to calculate

the error, ε(n).

– Update the W̃ (n) weight vector using the RLS algorithm as described

in Equations 4.9 through 4.12.

– Recalculate the output using the new weights.

– Form the bit decision (Equation 4.13 and use it to calculate the error,

ε(n).

– Update the phase estimate, Θr, for the phase locked loop as shown in

Equation 4.1.

• When the data frame has been completed, return the resulting vectors of

symbol estimates and bit decisions.

Section 4.2 further discusses the MATLAB and C software software implementa-

tions of this decision feedback equalizer-digital phase locked loop algorithm.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

46

4.2 Equalizer Implementation

The RLS equalizer used in this system is a C language implementation of

NUWC’s MATLAB version. The code performs an R input channel complex valued

exponentially weighted recursive least squares sparse adaptive filter algorithm for

a QPSK signal. The software implementations accept fractionally spaced input

samples with two samples per QPSK symbol. Therefore, k is used to denote the

sample index while n is used for the QPSK symbol index. Wideband libraries [8]

were used extensively to duplicate the functionality of the MATLAB code in C.

Examples of the Wideband library functions used in the equalizer are shown in the

following sections.

4.2.1 Vector and Matrix Storage

As was noted earlier in Section 4.1, both the MATLAB and C equalizer

code use the same notation. However, the column vectors in the MATLAB code

have been transposed in the C code for memory usage and indexing efficiency.

Matrices are stored in C as one long vector containing the matrices’ rows. This is

not only the optimal storage format but it also allows certain vector operations to

be used on matrices.

4.2.2 Initializing Vectors and Matrices

MATLAB uses the functions eye, ones, and zeros to initialize vectors and

matrices. The Wideband functions vfill and cvfill, which stand for vector fill

and complex vector fill, can be used as an equivalent replacement. To duplicate

the functionality of eye, the vector fill command is first used to fill the matrix with

zeros by treating the matrix as one long row vector. Then a loop is used to change

the diagonal elements to ones.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

47

4.2.3 Copying Sections of Vectors and Matrices

The Wideband functions vmov and cvmov, which stand for vector move and

complex vector move, are used to copy sections of vectors and matrices. As an

example, the matrix v_k is used to store the ṽr vectors as defined in Equation 4.4

is formed in MATLAB using a statement of the form:

v_k(1:k,:) = v(k:-1:1,:);

to copy the first k rows of v into v_k in the reverse order. This functionality is

duplicated in C using the Wideband function cvmov within a for loop covering

the number of diversity inputs.

cvmov(&v[index][k-1],-1,&v_k[index][0],1,k);

The for loop accounts for all diversity input channels just as the colon operator

does in MATLAB. Note that the variables v and v_k are transposed from their

MATLAB orientation as was described in Section 4.2.1. The first argument of

cvmov is the address of the k’th column of v and the second is a stride of -1. This

takes the first k columns of v in the reverse order. The third argument is the

destination (columns of v_k) and the stride of 1 keeps them in order. The final

argument, k is an element count.

4.2.4 Dot Products

The Wideband function ccdotpr to calculate a complex conjugate dot

product, is also used in the equalizer code. For example, the received symbol

estimate (Equation 4.7) is calculated in MATLAB using:

d(n) = W_k’ * U_k;

Again, these vectors are transposed from their MATLAB orientation requiring the

Wideband equivalent to multiply them in the reverse order using:

ccdotpr(U_k,1,W_k,1,&d_tmp,taps);

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

48

Here, U_k and W_k are the two vectors to be multiplied and ones are used as the

strides. The variable taps has been initialized to the length of the vectors being

implemented.

4.2.5 Matrix - Vector Multiplication

Another useful Wideband function is cmvmul which performs a complex

matrix-vector multiplication. It is used to implement Equation 4.9. In MATLAB ,

this equation takes the form:

invR_Uk = inv_R * U_k;

Note that invR_Uk is the variable used to denote P̃ in the MATLAB and C code.

The Wideband equivalent of the above calculation uses:

cmvmul(&inv_R[0][0],taps,taps,U_k,invR_Uk);

The first argument is the start of the inv_R matrix. The next two arguments are

the row and columns of inv_R which are both taps since it is a square matrix. The

fourth argument is the source vector, U_k, which is followed by the destination,

invR_Uk .

4.2.6 RLS Correlation Matrix Update

Updating the correlation matrix (Equation 4.12) is performed using the

following MATLAB code:

inv_R = (inv_R - alfa * invR_Uk * invR_Uk’)/lmda;

However, the Wideband library does not provide a function that does both a matrix

subtraction and a multiplication. And storing a temporary copy of the invR_Uk

outer product requires more memory than is available on the SHARC processors.

Therefore, the matrix update is performed on a column by column basis.

A for loop is used to cycle through the columns. First, a scaling factor of

-alfa * invR_Uk[col_indx] is calculated. Then the Wideband function cvsma

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

49

is used to perform a complex vector-scalar multiply and add. Initially, this was

implemented using:

cvsma(invR_Uk,1,&scale,&inv_R[0][index],

&taps,&inv_R[0][index],taps,taps);

to calculate the entire column of inv_R. However, on the SHARC processors this

implementation had some numerical instability problems. So a second method was

used to ensure that the matrix would remain symmetric. The new method uses:

cvsma(&invR_Uk[index],1,&scale,&inv_R[index][index],

&taps,&inv_R[index][index],taps,taps-index);

followed by:

cvconj(&inv_R[index+1][index],taps,

&inv_R[index][index+1],1,taps-index-1);

inside a loop that covers all but the last two columns. This multiply and add

only operates on the upper triangular half of the matrix. The cvconj is then

used to generate the lower (conjugate) part of the matrix. Since most of the

Wideband vector functions have a minimum element count, this method requires

the last four elements (last two columns) to be calculated outside the loop.

Finally, the Wideband function vscmul is used to multiply the result by

1/lmda to take care of the division by lmda. vscmul is a vector-scalar multiply,

but the entire inv_R matrix is treated as one long vector since there is no “matrix-

scalar multiply” function in the Wideband library.

4.3 Equalizer Front End

Due to processing and memory requirements, real-time operation requires

several equalizers, each running on its own processor. As will be described in

Section 5.2.4, jobs are submitted to the equalizers via a link port transfer. This

requires a small job receiving front end to configure a link port and DMA in order

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

50

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−1.5

−1

−0.5

0

0.5

1

1.5

2

Sample Index

R
e(

E
rr

or
)

Figure 4.5: RLS equalizer error from C version.

to receive the job. After the DMA reception has been configured, the front end

enters a loop in which it polls the link port status. Once a complete job transfer

has finished, the equalizer function is called to perform the equalization. Then the

loop repeats by reinitializing another link port reception.

An alternative job sending method that uses the processor common memory

space to transfer jobs from the channel combiner to the equalizers is described in

Section 5.2.3. That job transfer method also requires a job receiving front end to

poll the queue in the common memory for a job to equalize.

4.4 Equalizer Testing and Verification

Proper operation of the RLS equalizer code was verified by comparing it to

the known MATLAB version provided by NUWC. Figures 4.5 and 4.6 show how

the equalizer errors compare between the C and MATLAB versions respectively.

Both plots were generated using the same set of testing data.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

51

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−1.5

−1

−0.5

0

0.5

1

1.5

2

Symbol Index

R
e(

E
rr

or
)

Figure 4.6: RLS equalizer error from MATLAB version.

Due to the fact that MATLAB’s floating point precision is greater than

that of the SHARC processors, the two error waveforms are not exactly the same.

However, they both exhibit the same characteristic shape, indicating that the

C version is operating correctly. The actual equalized output vectors were also

compared and found to be very close. Again, there was some variation in the

exact magnitudes due to precision differences.

4.5 RLS Equalizer Benchmarks

Several benchmarking tests were performed on the RLS equalizer code to

determine the time required to equalize jobs with various tap counts. This equalizer

design applies the feedback and sparse feedback tap weights equally to all input

channels. Therefore, the equalizer’s computational complexity is strongly related

to the number of feedforward taps and the number of input channels.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

52

The following benchmarks were performed on 40 MHz 21060 SHARC digital

signal processors on a Spectrum Morocco II carrier board [6]. The time lines in

Figures 4.7 through 4.12 were generated by measuring the time required to execute

each of the major steps within the equalizer algorithm. A PMC ADADIO board

[9] was connected to the Morocco II carrier board. The DAC on the ADADIO

board was monitored with an oscilloscope. The equalizer code was temporarily

modified to write a different value to the DAC upon completion of each of the

following events:

• entry into the main processing loop

• addition of new samples to the U_k input vector

• calculation of the output and error with current weights

• update of the filter weights, W_k

• update of the inv_R matrix

• calculation of the output with the new weights

• update of the DPLL phase estimate

The computation time required for each event showed up as a plateau on

the oscilloscope waveform. Data captured from the oscilloscope trace was used to

measure the width of those plateaus and generate the benchmarking timelines.

The above sequence occurs once for each sample. Therefore, a larger spike

was also written to the DAC at the completion of each job. Triggering the oscillo-

scope on the larger peak was used to determine the total equalization time required

per job. The total equalization time is also noted in each of the following bench-

marks.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

53

0

0.2

0.4

0.6

0.8

1

1.2

T
im

e
(m

ill
is

ec
on

ds
)

Initialize main processing loop (42 µ sec)
Update U_k weight vector (46 µ sec)
Calculate output and error (76 µ sec)

Update filter weights (346 µ sec)

Update inv_R matrix (600 µ sec)

Calculate output w/new weights (80 µ sec)
Update phase esitmate (17 µ sec)

Figure 4.7: RLS benchmark for 41 taps.

4.5.1 41 Taps

According to preliminary tests conducted by NUWC, a typical test case

consists of 21 feedforward taps, 10 feedback taps, and two 5 tap sparse feedback

sections. For one input channel this results in a total tap count of 21 + 10 + 5 +

5 = 41 taps. As shown in Figure 4.7, this case requires about 1.5 msec of compu-

tation time per sample. The widest (590 µsec) section represents the time required

to perform the inv_R matrix update. Prior to that is the 350 µsec section repre-

senting the filter weight update calculations. Since these two operations account

for the majority of the equalizer’s computation time, they were optimized using

Wideband library routines.

Under these conditions, one job requires 2.34 seconds to equalize. Since each

job contains one second of data, three equalizers would be required for real-time

operation in this case.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

54

0

0.2

0.4

0.6

0.8

1

T
im

e
(m

ill
is

ec
on

ds
)

Initialize main processing loop (23 µ sec)
Update U_k weight vector (19 µ sec)
Calculate output and error (31 µ sec)

Update filter weights (343 µ sec)

Update inv_R matrix (562 µ sec)

Calculate output w/new weights (22 µ sec)
Update phase estimate (16 µ sec)

Figure 4.8: RLS benchmark for 41 taps with optimization.

Enabling optimization in the compiler results in the above case requiring

1.95 seconds to equalize one second of input data. As Figure 4.8 shows, the time

per sample has been reduced to about 1 msec. The filter weight update still takes

about 350 µsec and the inv_R matrix update has been reduced by 40 µsec to 550

µsec. This indicates that these operations are already well optimized.

4.5.2 62 Taps

Increasing the number of channels to two doubles the total number of

feedforward taps. Feedback taps are shared among channels so their count remains

unchanged. This results in a total tap count of (21 ∗ 2) + 10 + 5 + 5 = 62 taps.

Figure 4.9 shows that the filter weight update now requires just under 800 µsec and

the matrix update requires about 1200 µsec. This results in a total equalization

time of 4.75 seconds per job.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

55

0.5

1

1.5

2

T
im

e
(m

ill
is

ec
on

ds
)

Initialize main processing loop (61 µ sec)
Update U_k weight vector (77 µ sec)
Calculate output and error (137 µ sec)

Update filter weights (756 µ sec)

Update inv_R matrix (1.23 m sec)

Calculate output w/new weights (129 µ sec)
Update phase estimate (23 µ sec)

Figure 4.9: RLS benchmark for 62 taps.

0

0.5

1

1.5

2

T
im

e
(m

ill
is

ec
on

ds
)

Initialize main processing loop (31 µ sec)
Update U_k weight vector (30 µ sec)
Calculate output and error (54 µ sec)

Update filter weights (756 µ sec)

Update inv_R matrix (1.17 m sec)

Calculate output w/new weights (31 µ sec)
Update phase estimate (23 µ sec)

Figure 4.10: RLS benchmark for 62 taps with optimization.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

56

0

1

2

3

4

5

T
im

e
(m

ill
is

ec
on

ds
)

Initialize main processing loop (115 µ sec)
Update U_k weight vector (114 µ sec)
Calculate output and error (260 µ sec)

Update filter weights (1.62 m sec)

Update inv_R matrix (3.14 m sec)

Calculate output w/new weights (236 µ sec)
Update phase estimate (31 µ sec)

Figure 4.11: RLS benchmark for 104 taps.

Again, enabling optimization in the compiler helps slightly by reducing the

overall equalization time to 4.1 seconds per job. The computational details of this

case are shown in Figure 4.10.

This two diversity channel example represents operation in either time or

spatial diversity mode. Real-time operation with this tap count will require 5

equalizer modules.

4.5.3 104 Taps

On chip memory limits the channel combiner to four channels. This brings

the total tap count for this case to (21 ∗ 4) + 10 + 5 + 5 = 104 taps. Figures 4.11

and 4.12 show the timing details of this 104 taps case. Clearly, the filter weight

and matrix updates account for the majority of computational time per sample.

Considering the fact that equalization times with and without optimization

are 11.89 and 10.72 seconds respectively, it is obvious that the RLS equalizer is too

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

57

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

T
im

e
(m

ill
is

ec
on

ds
)

Initialize main processing loop (46 µ sec)
Update U_k weight vector (38 µ sec)
Calculate output and error (92 µ sec)

Update filter weights (1.93 m sec)

Update inv_R matrix (3.04 m sec)

Calculate output w/new weights (68 µ sec)
Update phase estimate (23 µ sec)

Figure 4.12: RLS benchmark for 104 taps with optimization.

computationally intensive for practical use in this case. Four channel operation is

still possible but it requires a tradeoff in the tap count. For example, as shown in

Table 4.2, the number of feedforward taps must be reduced to 11 (as opposed to 21)

to bring the equalization time down to a practical 4.59 seconds. Equalization times

over five seconds are not considered practical since there are only five available

SHARC processors on the Morocco II board when the other three are running

front-end and channel combiner modules.

4.5.4 Benchmark Summary

Table 4.1 lists the total equalization times required for the above bench-

marks without compiler optimization. The times obtained with optimization

enabled are summarized in Table 4.2.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

58

Input Feedforward Feedback Sparse Feed- Total Time (sec)
Channels Taps Taps back Taps Taps

1 21 10 10 41 2.34
2 21 10 10 62 4.75
4 21 10 10 104 11.89

Table 4.1: RLS equalization times without compiler optimization.

Input Feedforward Feedback Sparse Feed- Total Time (sec)
Channels Taps Taps back Taps Taps

1 21 10 10 41 1.95
2 21 10 10 62 4.1
4 21 10 10 104 10.72
4 19 10 10 96 9.28
4 17 10 10 88 7.97
4 15 10 10 80 6.75
4 13 10 10 72 5.63
4 11 10 10 64 4.59
4 9 10 10 56 3.67

Table 4.2: RLS equalization times with compiler optimization.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

59

CHAPTER 5

Channel Combiner

This chapter presents the channel combiner module, the function of which

is tying the front-end and equalizer modules together. As such, it must perform

the following tasks:

• Time alignment of data frames

• Channel analysis (based on the target ID correlation waveform) to identify

dominant multipath components

• Formation of “equalizer jobs” for distribution to the equalizer modules

As was shown in Chapter 2, several front-end modules send time and/or

spatial diversity channels into the channel combiner. Since signals from physically

separated sensors (spatial diversity) do not all arrive at the same time, the channel

combiner must time align the data frames before presenting them to an equalizer

module. Figure 5.1 presents a pictorial view of how the channel combiner time

aligns signals from multiple sensors. The channel combiner must also calculate

equalizer tap sizes and locations based upon the channel information gathered

from the TID ping and its echoes as described in Sections 2.3.1 and 2.3.2.

The inner workings of the channel combiner module are presented by first

discussing the interface with front-end modules followed by methods of distributing

completed jobs to equalizer modules. Next, the state machines that make up the

channel combiner’s inner core are discussed. Finally, the equalizer tap calculations

are presented.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

60

Front
end

Front
end

Channel
combiner

Acoustic
sensor

Acoustic
sensor

Time aligned sensor responses

Primary detection
(direct path signal)

Secondary detections
(multipath signals)

Figure 5.1: Channel combiner functional illustration.

5.1 Interface to Front-End Modules

Each front-end module runs on its own SHARC processor and is connected

to one acoustic sensor. The channel combiner also runs on its own processor

and receives data from the front-end modules via link ports. A set of ping pong

buffers is used in conjunction with a direct memory access (DMA) transfer to

bring data into the channel combiner. The ping pong buffers utilize a pointer

(buffer_to_process) to indicate the working buffer. While the CPU is processing

the working buffer, the other buffer is being filled by DMAs transferring data from

the front-end modules.

The channel combiner uses data structures to store information from the

input sensors (front-end modules). One of these sensor data structures is used

for every front-end module that is connected to the channel combiner. Table

5.1 lists the elements contained within each sensor data structure. Each sensor

data structure also contains the ping pong buffers mentioned above. Since these

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

61

Element Name Description
front-end data sub-structure input data (ping pong buffers)

associated with this sensor
sensor state (described in Section 5.3)
current job pointer to the job associated with this sensor

(described in Section 5.2.1)
channel channel (location) within the job where the

sensor data is to be written
transmission number data frame number for use with time diversity
largest peak and age used for ping synchronization

(described in Section 5.3.2)
TID_array[] used to track past TIDs for channel alignment

Table 5.1: Elements of the sensor data structure.

“buffers” consist of three arrays plus status information, they are essentially sub-

structures of the sensor data structure. Table 5.2 lists the elements contained

within each of the front-end sub-structures. Note that these are the same arrays

shown as being “Sent to Channel Combiner” in Figure 3.1.

Since the channel combiner can only perform calculations on one input

channel at a time it must rapidly alternate among them. A pointer (curr_sensor)

is maintained in order to keep track of the sensor (input channel) that is currently

being processed. Each time the channel combiner moves on to a new buffer of input

data, the curr_sensor pointer is updated to point to the sensor data structure

Element Name Description
length length of the buffer being sent from the front-end module

to the channel combiner
td_present pilot detected flag (switches telemetry on/off)
sensor_id identifies the sensor associated with a buffer of data
corr[] buffer of correlation values from the front-end module

(to be used for ping synchronization
and equalizer tap calculations)

TID[] buffer of target ID associated with each correlation value
demod[] buffer of matched filter outputs (demodulated data)

(to be time aligned and sent to an equalizer)

Table 5.2: Elements of the front-end data sub-structure.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

62

associated with the sensor (front-end module) supplying the data. So the channel

combiner makes use of a C code statement of the form:

curr_sensor -> buffer_to_process -> data

to access data associated with the working ping pong buffer within the appropriate

sensor data structure.

5.2 Equalizer Job Queuing

Real-time operation of the UDAT system requires that the data packets

generated by the channel combiner be equalized at a rate of one per second.

However, as was shown in Chapter 4, the equalizer algorithm often requires more

than one second to equalize a data packet. Therefore, real-time operation requires

several copies of the equalizer module to be run on separate processors. Multi-

processor equalizer operation requires a queuing scheme to distribute jobs among

the equalizers.

5.2.1 Equalizer Jobs

The channel combiner uses structures known as “equalizer jobs” to contain

all of the information required by an equalizer to process a packet of data. Elements

contained within each of the equalizer job structures are listed in Table 5.3. Two of

these job structures must be maintained by the channel combiner since data from

the various input sensors does not all arrive at the same time. For example, it is

possible for ‘sensor A’ to come to the end of a data frame before ‘sensor B’. The

job can’t be submitted to the equalizer until ‘sensor B’ has also reached the end

of its data frame. But in the meantime, ‘sensor A’ will be starting on a new data

frame which in turn requires a new job. Maintaining two job structures eliminates

this problem. Pointers known as actv_job and pend_job are utilized to keep track

of the active and pending jobs respectively. In the above example where ‘sensor

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

63

Element Name Description
pop[] vector of channel ‘fully populated’ flags
half[] vector of channel ‘halfway populated’ flags
det[] vector of channel detected flags
aborted[] vector of aborted channel flags
L feedforward symbol count
M feedback symbol count
M2[] sparse feedback symbol count vector
sumM2 sum of elements in the M2 vector
lenM2 length of the M2 vector
M2OFF[] sparse feedback delay/offset vector
v[][] demodulated signal vectors (data to be equalized)

Table 5.3: Elements of the equalizer job structure.

A’ finishes before ‘sensor B’, the two jobs allow ‘sensor A’ to start writing its new

data frame into the pending job while ‘sensor B’ is finishing up the current job.

When ‘sensor B’ has finished and the job has been submitted to the equalizer, the

actv_job and pend_job pointers are switched. Once a sensor has been assigned

a job as described in Section 5.3.2.4 it continues to use that job until it reaches

the end of a data frame. Therefore, the switching of the active and pending job

pointers does not cause a sensor to jump between jobs part way through a data

frame.

The channel population vector (pop) is used to signify that a channel is

fully populated with valid data to be used by the equalizer. This vector contains

FULL flags that correspond to valid demodulated signal vectors. Invalid signal

vectors (ones that do not contain data) are marked with an EMPTY flag in the

corresponding location in this population vector. Similarly, the halfway (half)

flags are used to indicate when a channel is half full of data. The det (detected)

flags are used to indicate that a signal has been detected on a particular channel.

The aborted flags are used to mark channels that were aborted due to the fact

that they hadn’t received a signal detection. The use of these flags is described

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

64

Element Name Description
dir_path[] storage space for the direct path signal
list linked list of correlator values for calculating

sparse feedback taps
(described in Section 5.4.2)

pointers[] vector of pointers into the linked list
(also described in Section 5.4.2)

Table 5.4: Elements of the equalizer scratch space structure.

in further detail in Sections 5.3.2 and 5.3.3. All of the feedforward and feedback

symbol counts L through M2OFF are calculated by the channel combiner based on

channel information gathered from the target ID correlation waveform. Section 5.4

explains the tap calculation procedures. Finally, the demodulated signal vectors

(v) contain the matched filter outputs (demod from Table 5.2) from each channel

that have been time aligned by the channel combiner.

Each equalizer job also has an associated scratch space for information that

is not passed on to the equalizer. Jobs and scratch space are separate for two

reasons. First, it allows them to be stored in different areas of on-chip memory.

Second, it prevents the needless transfer of the scratch space information to the

equalizer. Each scratch space structure contains the elements listed in Table 5.4.

The direct path storage area is used by the “Record Direct Path” state that

will be described in Section 5.3.2. The linked list and its vector of pointers are

utilized by the “Build Sparsing List” state also described in Section 5.3.2 as well

as the equalizer tap calculations presented in Section 5.4.

5.2.2 Job Queuing Methods

Two methods were developed to transfer jobs from the channel combiner to

the equalizer modules. The first method uses the common memory on the Morocco

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

65

II board as a queue where jobs are temporarily stored until an equalizer reads them.

The second method uses link port transfers to send jobs to the equalizers.

The common memory job queuing method allows equalizers to be run on

any processor without the need for any special configurations. However, it does

have some limitations. For example, the code used to read data from the ADADIO

(input/output) board [9] ties up the processor common bus making it unavailable

for use with this job queuing scheme. There are also plans to run this software on

platforms other than the Morocco II that do not have the same common memory

architecture. Therefore, it was necessary to develop the link port job transfer

method that is currently in use.

The link port method works very much like the link port transfer used to

bring front end data into the channel combiner. However, instead of using a ping

pong buffering scheme, the data is sent in one continuous block. An additional

link port status check is also performed prior to sending a job. The status check

insures that the equalizer on the receiving link port is ready to accept a new job.

5.2.3 Common Memory Transfer Theory of Operation

With this method, multiple job slots were set aside in the common memory.

This allowed new jobs to be continuously written into the queue without over-

writing an unequalized job. The channel combiner would write out new jobs at a

rate of one per second. Each write consisted of a bus request, the data transfer,

and a bus release. Meanwhile each processor running an equalizer module was

also running a job scanning front-end routine. The job scanning front end would

request the common bus on regular intervals. While it had access to the bus

it would check for an available job by looking at a job status flag and copy the

first available job it found into the processor’s local memory. Once the check and

transfer (if applicable) were completed, the job’s status flag was changed and the

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

66

bus was released. When available jobs were found they were sent to the equalizer

and the front end stopped polling for jobs until the equalizer was finished.

5.2.4 Link Port Transfer Theory of Operation

Instead of submitting jobs to a queue in the common memory, the channel

combiner writes them directly to an equalizer via a link port transfer. This

requires that the channel combiner be provided with a list of link ports that will be

connected to processors running equalizers. Under normal operating conditions,

the channel combiner cycles through the available link ports in sequence. However,

if an equalizer is busy (as determined by the link port status check) an error is

flagged and the job is sent to the next free equalizer in the sequence.

The required number of equalizers depends largely on the number of taps

selected. As long as a sufficient number of equalizers are in operation, the channel

combiner will function under normal operating conditions and no “busy equalizer”

error flags will be set. Busy equalizer errors are an indication that more equal-

izers are required to maintain real-time operation. Since the maximum number of

equalizers is limited by the SHARC processor’s 6 link ports, it may be necessary

to reduce the maximum tap limit. The benchmarks presented in Chapter 4 give

a more detailed account of the number of equalizers required to deal with various

tap counts.

5.3 State Machine Implementation

The inner core of the channel combiner consists of two state machines.

One state machine handles the various calculations associated with each of the

input sensors (front-end modules). The other state machine is used to maintain

the equalizer jobs and distribute them to the equalizer modules. The channel

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

67

combiner uses an overall status to cycle among gathering new input as described

in Section 5.1 as well as updating the appropriate state machines

5.3.1 Overall Status

The channel combiner’s overall status is one of three possibilities:

• Monitor Input

• Process Input

• Job Maintenance

Figure 5.2 presents a flowchart showing how the channel combiner cycles through

the above modes.

While in the “Monitor Input” mode, the link ports are monitored for

incoming data. This is done by looking at a pointer associated with the ping pong

buffers described in Section 5.1. New data is ready when the buffer_to_process

pointer associated with a front-end module changes, indicating that the DMA has

completed filling an input buffer. The actual pointer change takes place in an

interrupt service routine that handles the DMA transfers to the ping pong buffers.

Once a new input buffer has been collected, the status changes to “Process

Input”. The sensor state machine for the appropriate sensor (presented in Section

5.3.2) is executed for the new buffer of input samples. Then, if necessary, the “Job

Maintenance” state machine described in Section 5.3.3 is updated.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

68

"Monitor Input"

Wait for DMA
interrupt and

transfer new buffer

"Process Input"

Update the appropriate
sensor state machine

Is at least
one channel
"halfway" ?

"Job Maintenance"

Update the appropriate
job state machine

Yes

No

Figure 5.2: Channel combiner status flow chart.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

69

5.3.2 Sensor State Machine

The channel combiner has the capability to maintain multiple sensor state

machines. A separate sensor state machine is associated with each front-end

module that supplies data to the channel combiner. When the channel combiner

status is “Process Input”, the sensor state machine associated with a ping pong

buffer of new data is updated. A diagram of the sensor state machine is shown in

Figure 5.3. It contains the states discussed in the following subsections, namely,

Ping Synchronization, Get Ping TID, Wait for Ping, Watch for Detection, Record

Direct Path, Build Sparsing List, and Record Modulated Data.

5.3.2.1 Ping Synchronization

This is the start-up state for the sensor state machine. By looking for pings

spaced approximately one second apart, this “Ping Synchronization” state prevents

the UDAT receiver from triggering on echoes of pings or false ping detections. This

state examines the correlator outputs provided by the front-end modules to locate

dominant peaks that are close to one second apart. Since it is impractical to save

the correlator outputs for a full second, only the largest correlator peak over the

past 1.1 seconds is maintained in memory. A flow chart of the ping synchronization

logic is shown in Figure 5.4.

In this state, the sample from the correlator is compared to a detection

threshold. Synchronization occurs if the sample is above the threshold and the

largest peak is approximately one second old. Upon synchronization, the sensor’s

state is changed to “Get Ping TID”. Otherwise, the sample is compared to the

largest correlator peak and if appropriate used to replace the largest peak.

Once the sample has been processed, the age of the largest peak is incre-

mented and then checked. A peak age that is significantly older than one second

is an indication of a missed ping. So, if the peak’s age is over 1.1 seconds, it is

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

70

SPARSING
BUILD

LIST

RECORD
DIRECT

PATH DETECTION

WATCH
FOR

PING
GET

TID

START

MODULATED
RECORD

DATA

PING
SYNC

Timed Out
(not detected)

Done
waitingFinished

recording

Finished
recording

Finished
building

list

FOR
WAIT

PING

Synchronized

Detected

Found TID

wait 950ms

wait 50ms

Figure 5.3: State flow diagram for the sensor state machine.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

71

Yes

Yes

Yes

Yes

Read in new
correlator value

Increase age
of largest peak

Greater than
detection threshold?

Is peak
approximately

one second old?

No

Is the
current sample
> largest peak?

Erase largest
peak

Replace peak
with current

sample

Reset peak
age to zero

Stay in the
"PING_SYNC"
state for another

iteration

Move on to
"GET_PING_TID"

Is peak
over one

second old ?

No

No

No

Figure 5.4: Ping synchronization flow chart.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

72

erased. This procedure prevents synchronization to a false correlator peak that is

not at the start of a data frame.

5.3.2.2 Get Ping TID

Once ping synchronization has been established, the sensor state machine

moves into the target ID detection (“Get Ping TID”) state. This state records the

target ID that corresponds to the synchronization ping. When the ping’s TID has

been established, it is entered into an array containing the TIDs of the past four

pings. The array of past TIDs is used to determine the data frame number of a

packet when operating in time diversity mode.

5.3.2.3 Wait for Ping

Following the “Get Ping TID” state, the state machine enters the “Wait

for Ping” state. This state simply waits a specified amount of time (determined

by a “wait counter”) before moving on to “Watch for Detection”.

“Wait for Ping” can follow either the “Get Ping TID” or “Record Modulated

Data” states. Each state sets the “wait counter” differently. “Get Ping TID” sets

the “wait counter” to just under one second. That causes “Wait for Ping” to stop

just short of the next ping that is due to arrive. “Record Modulated Data” sets

the “wait counter” for 50 msec causing “Wait for Ping” to wait out most of the

59 msec quiet time that follows each data frame. Once “Wait for Ping” is finished

the state is changed to “Watch for Detection”.

5.3.2.4 Watch for Detection

This state looks for the next detection threshold crossing in the correlator

waveform. Once the threshold has been exceeded, the detection is assigned a job

and a data channel within that job. This is where data from this detection will

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

73

be written. A detected flag is also set for this channel at this time. That flag

will later be used by the job state machine described in Section 5.3.3 to determine

which channels are being filled with valid data. Then the sensor state machine

continues on to the state “Record Direct Path”.

However, if a threshold crossing does not occur within a timeout limit the

sensor state machine is reset back to the “Ping Synchronization” state. Figure 5.5

contains a flow chart illustrating the “Watch for Detection” state.

5.3.2.5 Record Direct Path

The threshold crossing detected by “Watch for Detection” indicates the

start of the direct signal path. This state records the direct signal path section of

the correlator waveform for use in determining channel characteristics in the form

of feedforward and non-sparse feedback equalizer taps. Section 5.4 discusses the

calculations involved in determining the tap sizes based on this direct signal path

recording.

In addition, this state also locates the maximum peak of the target ID

correlation. The time at which the maximum peak occurs is used as the time

origin for this detection.

The target ID corresponding to the maximum peak is also recorded into the

array of past TIDs and used to determine the data frame number of this packet.

A check of the TID array is performed to ensure that the expected TID sequence

is being received. An out of sequence ID will set a TID_error flag that is used as

a warning that this may be a false detection.

Once the direct path (5 msec time window) has been recorded into the job

structure, the sensor’s state is changed to “Build Sparsing List”. In the event

that the direct path lasts longer than the 5 msec time window, the rest of the

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

74

Read in new
correlator value

Greater than
detection threshold?

Yes Is pending
job full?

Yes Flag job
full error

NoNo

Identify current "job",
current "scratch", and
job "channel" for this

detection based on
the sensor and

detection numbers

Initialize sample counter
and set "detected" flag

for this channel

Move on to
"RECORD_DIRECT_PATH"

No

Stay in the
"WATCH_FOR_DET"

state for another
iteration

Reset to the
"PING_SYNC"

state

Timed out?
Yes

Figure 5.5: Watch for detection flow chart.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

75

direct path will be picked up by the sparsing list and later merged with the direct

feedback path during the final tap calculations.

5.3.2.6 Build Sparsing List

Sensors in the “Build Sparsing List” state update the sparsing list (described

in Section 5.4.3). This list is later used to extract channel characteristics that are

fed into the equalizer in the form of sparse feedback tap sizes and locations. The

actual calculation of these sparse feedback taps is discussed in further detail in

Section 5.4.

This state lasts until the end of the 100 msec quiet time in the data frame.

When completed, the sensor enters the “Record Modulated Data” state.

5.3.2.7 Record Modulated Data

Sensors in this state record the demodulated (and Doppler compensated)

message portion of the data frame into an appropriate slot in the current job.

The appropriate slot and current job were determined while the sensor was in the

“Watch for Detection” state. Recording the demodulated data consists of copying

samples of demod (Table 5.2) into the appropriate row (slot) of v (Table 5.3). Since

the “Record Modulated Data” state is always entered exactly 100 msec after the

peak correlation with the synchronization ping this effectively time aligns the data.

As was described in Section 2.3, this section of data lasts for 800 msec. A

sample counter is used to set a halfway (half) flag at the 400 msec point. The

half flag is later used to see if the job state machine (described in Section 5.3.3)

is ready to be updated.

Once the sample counter has reached the 800 msec point, the sensor has

completed recording its demodulated data. At this point, the sensor is marked

complete by setting its pop flag in the job data structure. Then the sensor state

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

76

machine is returned to the “Wait for Ping” state to wait out the 59 msec quiet

time that follows each data frame.

Since all of the flags such as half, det, pop, and aborted reside within

the job structure (rather than the sensor structure) there is no need for the sensor

state machine to perform any sort of clean up or re-initialization at the end of

each data frame. Those tasks are performed at the end of the “Send Job” state

described in Section 5.3.3.4.

5.3.3 Job State Machine

Following each update of the sensor state machine, the half flags for each

channel are examined to see if the job state machine needs to be updated.

In the case of no time diversity, a set half flag on at least one of the channels

will cause the channel combiner’s status to change to “Job Maintenance” which in

turn updates the job state machine. When time diversity is being used, only the

channels associated with the second transmitted data frame are examined. A set

half flag on any one of those channels will move the channel combiner into the

“Job Maintenance” status where the job state machine will be updated.

Figure 5.6 presents a diagram of the job state machine. It takes on one of

four different states.

5.3.3.1 Abort Channels

While in this state, all the channels associated with the active job are

examined for detections. This is done using the detected flags that were set in

the “Watch for Detection” state of the sensor state machine (Section 5.3.2.4). Any

channels that have not been detected by this point are aborted by setting their

sensor state back to “Ping Sync” and setting their aborted flag.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

77

Abort
Chans

Calc
Taps

Check
Send

Send
Job

Taps
calculated

Job
sent

Undetected
channels
aborted

START
when at least
one channel is

"halfway"

Ready to Send

Not Ready to Send

Figure 5.6: State flow diagram for the job state machine.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

78

Since the job state machine is only updated after at least one channel has

been detected and reached the halfway point, any undetected channels can be

safely aborted at this point. Once this check has been performed and necessary

channels aborted, the job state machine moves on to “Calc Taps”.

5.3.3.2 Calculate Taps

The “Calc Taps” state performs the equalizer tap calculations as described

in Section 5.4. These calculations are based on the linked list of maximum corre-

lator values described in Section 5.4.2. Following the calculations, the job state is

changed to “Check Send”.

5.3.3.3 Check Send

The “Check Send” state determines whether or not a job is ready to be

sent to an equalizer. First, the number of full and aborted channels are counted.

If the number of full channels plus the number of aborted channels does not add

up to the total number of channels, then there are still some channels being filled.

Note that for time diversity mode, only the channels associated with the second

transmitted data frame are checked in this manner.

In the event that there are still detected channels waiting to finish filling,

the job state machine is kept in the “Check Send” state and the channel combiner’s

status goes back to “Monitor Input”, which allows another buffer of input data to

be processed by the sensor state machine.

Upon returning to “Job Maintenance” status (after processing the new

buffer), the job state machine is now in the “Check Send” state where the above

check will be performed again.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

79

Once the number of aborted plus full channels matches the total number of

channels it is time to send the job. The job is sent by moving into the “Send Job”

state.

5.3.3.4 Send Job

Upon entering the “Send Job” state, the job is submitted to the equalizer

module via a link port transfer as described in Section 5.2. The old common

memory job transfer method (also described in Section 5.2) required the “Send

Job” state to search for a free slot in the job queue prior to submitting the job.

After the job has been sent, some cleanup and bookkeeping are done. The

local copy of the sent job is re-initialized to prepare it for reuse. Reinitializing

the job clears all of the populated (pop), detected (det), halfway (half), and

aborted flags as well as clearing out the entries from the sparsing list. Then

any uncompleted sensors are returned to the state “Ping Sync”. In addition, the

active and pending jobs are switched. Finally, the job state machine returns to

the “Abort Chans” state.

Once the job state machine has been updated, the overall status of the

channel combiner is set back to “Monitor Input” to read in a new buffer of input

data.

5.4 Equalizer Tap Calculations

Section 2.3.2 mentioned that the quiet time between the synchronization

ping and the actual data can be used to gather information about the link’s channel.

This information must be presented to the equalizer in the form of tap locations

and sizes. Information recorded by the “Record Direct Path” and “Build Sparsing

List” states is used for just that purpose.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

80

As was mentioned in Section 5.3.2.5 the detection threshold crossing in

the “Watch for Detection” state signifies the start of the direct signal path. The

feedforward section starts there and lasts until the peak in the correlator waveform.

Both of those points were determined in the “Record Direct Path” state so the

feedforward tap calculation is simply finding the distance between those two points.

A feedforward tap scaling factor is also included so the user can fine tune the

number of feedforward taps selected by this calculation. The center-tap equalizer

requires an odd number of taps in its feedforward section. Therefore, if the number

of taps turns out to be even, one is added to make it odd.

The non-sparse feedback section starts at the correlation peak and lasts

until the direct path signal has dropped below a certain threshold. Calculation of

the non-sparse feedback tap count involves searching through the recorded direct

path for that threshold crossing and determining how far it is from the correlation

peak. Again, a scaling factor is used to allow fine tuning of the non-sparse feedback

tap count.

The selection of sparse feedback tap locations and sizes is performed using

a linked list of the maximum correlator values. Whenever a sensor is in the “Build

Sparsing List” state, it updates this list. Once all sensors (for a given job) have

finished updating the list, it is then used to calculate the sparse feedback tap

information.

5.4.1 Tap Selection Theory of Operation

This method of building and parsing a linked list of correlator values to

determine tap locations was developed due to processing time constraints.

Input from the front-end module(s) arrives at a rate of 5000 samples/sec

in packets containing roughly 60 samples (12 msec) each. With only 12 msec to

process 60 samples (or 120 samples if receiving input from two front-end modules)

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

81

the channel combiner does not have much time available for a computationally

unbalanced tap calculation algorithm.

An example of a computationally unbalanced algorithm would be storing

the raw target ID correlation waveform and then searching through it for peaks.

Storing the values would be quick and have time per sample to spare. However,

searching the 100 msec (quiet time) vector would likely take longer than 12 msec

and result in data loss.

Building and parsing a linked list is a more computationally balanced

method. It spreads the processing time over a large number of samples. Updating

the list for each new sample makes use of the spare processing time that would be

wasted by just recording the sample into an array. The resulting list contains corre-

lator peaks sorted by magnitude eliminating the need to search through a vector.

Therefore, the remaining calculations needed to extract the tap information will

not last long enough to result in data loss.

A benchmark similar to the ones performed on the equalizer was used to

verify that this tap calculation method would fit within the channel combiner’s

time constraints. The time required for the “Build Sparsing List” function to

process one sample was hardly measurable on an oscilloscope (well under the 200

µsec available per sample). A typical list containing 30 entries required 0.3 msec

to process. Again, well within the 12 msec available between input receptions.

The linked list of peak values also provides a memory savings over storing

the raw correlator waveforms. By having all sensors associated with a job maintain

the same list, it also provides a simple and effective way of combining the infor-

mation from all channels.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

82

5.4.2 The Linked List Structure

Each equalizer job scratch space (mentioned in Section 5.2.1) contains a

linked list of correlator values that were recorded during the “Build Sparsing

List” state. Each element of the linked list is a structure containing the following

elements.

• pointer to the previous element

• pointer to the next element

• index of the correlator value

• the correlator value

The previous and next pointers are used for list bookkeeping. The index

is used to keep track of the value’s original location in the input sequence. The

index is taken with reference to the center of the target ID correlation peak found

by “Record Direct Path”. This list is used to store a fixed number of the largest

peaks (over all sensors associated with a job) in their correlator waveforms.

In addition to the list, a vector of pointers into the list is also maintained

for bookkeeping purposes. These pointers are all initialized to NULL. When an

element from location N in the original input sequence is added to the list, the

N’th pointer is set to point to that list entry. This list of pointers will be used

to index into the list during the tap calculation process. Figure 5.7 illustrates the

relationship between the linked list and its corresponding vector of pointers.

5.4.3 Maintaining the List

This list of peaks in the correlator waveform is updated by sensors in the

“Build Sparsing List” state. As each new correlator sample arrives, it is checked

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

83

index
value
next
previous

Vector of pointers into the list

Linked list of maximum
correlator values

NULL (default)

Figure 5.7: Linked list of correlator values and corresponding pointers.

against the last (smallest) element in the list. If the new sample is larger, it is

added to the list. If not, the sample is discarded and the next sample is processed.

Since multiple sensors (each associated with the same job) all write to the

same list, the possibility of repeated indices arises. This requires an additional

check to be performed before writing a new value to the list. If a value is to be

written to an already occupied index, the old value is overwritten only if it is

smaller than the new one. If the index of the value to be written is not already

occupied then the new value (along with its index) is written into the appropriate

location based on its magnitude. To maintain a finite list size, smaller elements

are deleted from the end of the list whenever a new entry is added. The flow chart

in Figure 5.8 illustrates this procedure.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

84

Is the
current sample >
smallest in list?

Read in the
current sample

Is there
already an entry

at this index?

Is this
new sample

larger?

Replace the
existing entry
at this index

and update the
"pointers" vector

Finished with this sample

Make room by
removing the old

"end" element
from the list

Add the new
element to
the list and
update the

"pointers" vector

Yes

Yes

Yes

No

No

No

Figure 5.8: List construction and update flow chart.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

85

5.4.4 Selection of Sparse Tap Sizes and Locations

Once all sensors have finished writing to the list, the tap and location

calculations can begin. This is done when the job state machine of Section 5.3.3

is in the “Calc Taps” state. The feedforward and non-sparse feedback taps are

calculated as described at the beginning of this section. Then the sparse feedback

taps are calculated in the following manner.

First, a tap is centered at the index of the maximum value in the list.

The width of the tap is initially set to a minimum tap selection width called

MIN_SECT. These MIN_SECT elements are then deleted from the list along with

their corresponding pointers in the bookkeeping pointer array. The pointers array

is examined to see if the tap’s four neighbors (two on each side) are present in

the list. If any of them are present, the tap width is widened by four and those

entries are deleted from the list and pointers array as well. The widening continues

until there are no more list entries at the neighboring indices. Then, the process

repeats with the next tap location being set to the index at the top of the list.

New taps are added and widened until either the maximum number of taps are

allocated or the maximum number of tap locations are used. This sparse feedback

tap calculation procedure is illustrated in Figure 5.9.

5.5 Channel Combiner Testing and Verification

Since the UDAT system makes extensive use of link ports to transfer data

into and out of the channel combiner, it was imperative that the ping pong buffer

and link port status check routines be thoroughly tested. These tests involve

writing two pieces of test code, a sender and a receiver. The sender simply fills

a buffer full of easily recognizable data and sends it out a link port by calling

the link port sending code to set up a transfer. Meanwhile, the receiver test code

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

86

Start at the
largest list entry

Find its index and
the indices of its
"MIN_SECT−1"

neighbors

Remove these
MIN_SECT

entries and "NULL"
out their pointers

in the "pointers" vector

Examine the 4
neighbors (2 each side)
in the "pointers" vector

Are they
all "NULL"?

Widen the selection
and find the indices

of its new
"MIN_SECT−1"

neighbors

Move on to
next largest
list entry

End of
list ? Finished

Yes

Yes

No

No

Figure 5.9: Sparse feedback tap calculation flow chart.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

87

calls upon the link port ping pong buffer routines to receive the data. The Analog

Devices Visual DSP debugger [10] was used to set a break point in the receiver

test code and examine the contents of the ping pong buffers. The presence of the

easily recognizable test data in the ping pong buffers confirms that the link port

sending and receiving code operates correctly. Similarly, the link port status check

(used by the “Send Job” state) was also tested using the Visual DSP debugger.

This involves stopping the receiver and leaving the sender running. Examining the

status flag proved that the link port status check code functions correctly.

Testing of the channel combiner module was broken down into individual

testing of the key states as well as overall testing. The key states of the channel

combiner include “Ping Synchronization”, “Watch for Detection”, “Build Sparsing

List”, and “Calc Taps”.

5.5.1 Ping Synchronization Testing

The ping synchronization state of the sensor state machine was tested using

artificial test data as the input to the channel combiner. The Visual DSP debugger

was used to single step through the ping synchronization code and check for proper

operation. Due to memory limitations it was not possible to store several seconds

of artificial test data so the debugger was used to modify the peak age to simulate

peaks that have gotten “too old”. As desired, the sensor state would only advance

to “Get Ping TID” when two pings were approximately one second apart.

5.5.2 Watch for Detection Testing

Artificial testing data was also used to make sure the “Watch for Detection”

state was working correctly. This testing data consists of a buffer of correlator

values containing known peaks exceeding the detection threshold. Single stepping

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

88

through the code with the debugger was used to verify that the peaks are being

detected and assigned to jobs correctly.

5.5.3 Build Sparsing List Testing

The “Build Sparsing List” code described in Sections 5.3.2 and 5.4 was

thoroughly tested using a dedicated test routine. The test procedure involves

calling the “Build Sparsing List” function with artificial testing data. This testing

data consists of a vector populated with sparsely placed peaks. The resulting list

are then examined in the debugger to be sure that the peaks and their locations

are being stored correctly.

5.5.4 Calc Taps Testing

Sparse feedback tap calculation for the equalizer (Section 5.4) is based on

the list generated by “Build Sparsing List”. Therefore, the same artificial test

data and resulting list were also used to test the tap calculation code. Comparing

the resulting tap widths and locations to the artificial data shows that the “Build

Sparsing List” and “Calc Taps” routines are correctly centering appropriately sized

taps on the peak locations.

5.5.5 Overall Channel Combiner Testing

Normal operation of the channel combiner requires a minimum of several

seconds worth of input data to become synchronized and generate some equalizer

jobs. Therefore memory size constraints limit the degree of testing that can be

performed with artificial data.

Overall testing of the channel combiner involved writing an artificial data

source module to supply data in the same manner as the actual front-end module.

This data source stores one data frame (1 sec) worth of simulated target ID

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

89

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−300

−200

−100

0

100

200

300

D
em

od
ul

at
or

 O
ut

pu
t (

R
ea

l P
ar

t)

Samples (5000 samp/sec)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0

500

1000

1500

2000

2500

3000

C
or

re
la

to
r

O
ut

pu
t

Figure 5.10: Sample of artificial testing demodulator (top) and correlator (bottom)
waveforms.

correlator and demodulator output waveforms in local on-chip memory. Those

waveforms are continuously transmitted through the link port to the channel

combiner. Figure 5.10 shows the simulated waveforms that were repeatedly sent

to the channel combiner for this test.

The output of the channel combiner was sent to an equalizer module and a

breakpoint was placed in the equalizer module, allowing the resulting equalizer jobs

to be analyzed for proper contents. The tap counts and locations in the resulting

jobs were compared to the peaks in the simulated correlator waveform to verify

that the channel combiner performs the tap calculations correctly. The simulated

data source placed zeros in the non-message portions of the demodulator waveform

making it easy to check that the channel combiner properly time aligns the data

frames.

However, since this test continuously repeated the same exact packet it did

not serve as a true test of the channel combiner’s synchronization and detection

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

90

capabilities. Those features can only be tested by feeding real data into the

complete system consisting of a front-end module, the channel combiner module,

and one or more equalizer modules. Sections 6.1 and 6.2.2 present the test setup

and procedures used for overall system testing.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

91

CHAPTER 6

System Testing and Conclusions

This chapter outlines the hardware and software configuration used during

the development and testing stages of this underwater digital acoustic telemetry

(UDAT) system.

6.1 Test Setup Configuration

The system was developed and tested on a Spectrum Morocco II carrier

board [6] containing eight 21060 SHARC digital signal processors. The system uses

a modular design and makes extensive use of link ports to transfer data amongst

the processors. This allows the system to be relatively flexible when migrating to

other SHARC processor platforms.

These tests conducted on the UDAT system were performed on the setup

shown in Figure 6.1. A digital audio tape (DAT) of actual underwater signal

receptions (recorded aboard a submarine) is used to provide real data signals to the

system. A PMC ADADIO board [9] containing analog to digital converters (ADCs)

converts the DAT’s audio output and makes it available to the SHARC processors

on the Morocco II board. The ADADIO board also contains digital to analog

converters (DACs) that were connected to an oscilloscope to conduct the equalizer

benchmarks presented in Section 4.5. The front panel LEDs on the Morocco II

also proved useful as an additional debugging tool.

Also shown in Figure 6.1 is a Mountain ICE JTAG interface pod [11], which

provides the link between the Morocco II board and a PC running Visual DSP

development and debugging software. The Visual DSP debugging software was

used extensively to test the code for proper operation and store copies of various

data buffers.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

92

DAT
(digital audio tape)

player

PMC ADADIO
I/O board

Storage
Oscilloscope

Morocco II
V8 SHARC carrier board

in VME chassis

Mountan ICE
JTAG interface pod

PC running
VisualDSP
debugger

L/R audio out
analog input

JTAG interface

analog output

PMC interface

Front panel LEDs

Figure 6.1: Test setup configuration.

Figure 6.2 illustrates the UDAT module layout on the Morocco II board.

This configuration makes maximum use of the Morocco II’s link port intercon-

nection structure and allows for five equalizer modules and one front-end module.

An alternate configuration (used for two physical input channels) replaces the

equalizer on DSP 0, Cluster 3 with a front-end module. That layout is illus-

trated in Figure 6.3. The “Data Source” shown on DSP 0, Cluster 1 in both

configurations is a program (m2_drv_bb_sim.c) written by NUWC to read data

from the ADADIO board and distribute it (via a link port) to another processor.

Since m2_drv_bb_sim.c is limited to sending data out one link port, the front-end

module running on DSP 0, Cluster 2 in Figure 6.3 must use a send_to_back option

to pass the second channel of data along to another equalizer module on DSP 0,

Cluster 3. Software configuration parameters and their default settings for these

tests are listed in Appendix B.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

93

C
luster 3

C
luster 2

C
luster 1

C
luster 0

"5"
"7"

"4"
"6"

"0"
"2"

"1"
"3"

F
ront P

anel
C

onnector
C

onnector

E
xternal Link P

ort C
able

Link 3
Link 0

C
hannel

C
om

biner

D
S

P
 1

D
S

P
 0

D
S

P
 1

D
S

P
 0

D
S

P
 1

D
S

P
 1

D
S

P
 0

F
ront−

E
nd

E
qualizer

E
qualizer

D
ata S

ource
LP

 4

D
S

P
 0

E
qualizer

E
qualizer

E
qualizer

LP
 2

LP
 2

LP
 4

LP
 5

LP
 1

LP
 1LP

 5
LP

 4

LP
 5

LP
 3

LP
 3

LP
 0

LP
 0

Figure 6.2: Module arrangement on Morocco II for one input channel.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

94

C
luster 3

C
luster 2

C
luster 1

C
luster 0

"5"
"7"

"4"
"6"

"0"
"2"

"1"
"3"

F
ront P

anel
C

onnector
C

onnector

E
xternal Link P

ort C
able

Link 3
Link 0

(send_to_back)

C
hannel

C
om

biner

D
S

P
 1

D
S

P
 0

D
S

P
 1

D
S

P
 0

D
S

P
 1

D
S

P
 1

D
S

P
 0

E
qualizer

E
qualizer

D
ata S

ource
LP

 4

D
S

P
 0

E
qualizer

E
qualizer

LP
 2

LP
 2

LP
 4

LP
 5

LP
 1

LP
 1LP

 5
LP

 4

LP
 5

LP
 3

LP
 3

LP
 0

LP
 0

F
ront−

E
nd

F
ront−

E
nd

LP
 5

LP
 4

Figure 6.3: Module arrangement on Morocco II for two input channels.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

95

6.2 System Testing Procedures and Results

Several procedures were used to test the UDAT system for proper function-

ality. These tests will be described in detail in the following sections.

6.2.1 Front-End Module Testing

The front-end module (presented in Chapter 3) was tested using the data

on the DAT. The channel combiner module was temporarily replaced by a data

gathering test routine that recorded several seconds of the front-end module’s

output waveforms. A three second section of the demodulator output waveform

is shown in Figure 6.4. This waveform matches the structure of the data frame

format presented in Section 2.3. Since it was sampled at a random time it starts

out near the tail end of a frame. The region starting at around 0.2 sec and ending

around 1.0 sec is a QPSK message portion. There is a clear quiet time following

that message before the TID ping that occurs shortly after 1.0 sec. There is also a

clear quiet time following that ping and the start of another message near 1.2 sec.

However, this second message has a significant delayed multipath that obscures the

following quiet time and starts to blend with the following TID ping that occurs

shortly after 2.0 sec.

In addition to the demodulator output waveform, a corresponding three

second section of the correlator output waveform was also recorded. This waveform

is shown in Figure 6.5. As expected, the main detections show up as peaks one

second apart. Detections from multipath signals are also present and in the case

of the second detection (around 1.0 sec) they show up as a weaker peak in the

correlation waveform. The third detection in this waveform (around 2.0 sec) shows

a weaker main detection followed by a stronger delayed detection. The weakness of

the main detection is due to the interference caused by the long delayed multipath

signal present in the preceding frame.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

96

0 0.5 1 1.5 2 2.5 3
−20

−15

−10

−5

0

5

10

15

20

Time (seconds)

D
em

od
ul

at
or

 O
ut

pu
t (

R
ea

l P
ar

t)

Figure 6.4: Sample of demodulator output waveform.

0 0.5 1 1.5 2 2.5 3
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Time (seconds)

C
or

re
la

to
r

O
ut

pu
t

Figure 6.5: Sample of correlator output waveform.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

97

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Yes

No

126 Bit Errors

1874 Correct Bit Decisions

Symbol Index

B
it

D
ec

is
io

n
=

 B
it

R
ef

er
en

ce

Figure 6.6: Equalization results from one input channel (no diversity).

6.2.2 Overall System Testing

Overall system tests were performed using the complete test setup that was

described earlier in this Chapter. The setup is shown in Figures 6.1 and 6.2.

The DAT contains receptions of a known data packet that is repeatedly

broadcast for several minutes. The debugger was used to place breakpoints in the

equalizer modules to observe and store their outputs. The stored equalizer outputs

were then compared against the known message in MATLAB. Figures 6.6 through

6.8 show the results of these tests.

The results of the single channel (no diversity) test shown in Figure 6.6

show that the system is working but the performance is rather poor with 126 bit

errors (out of 2000 bits). This poor performance can be attributed to the fact that

one input channel (no diversity) was used during that test. Figure 6.7 backs this up

by showing how time diversity lowers the number of bit errors to 63. However, 63

bit errors is still a rather high error rate, indicating the system would likely benefit

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

98

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Yes

No

63 Bit Errors

1937 Correct Bit Decisions

Symbol Index

B
it

D
ec

is
io

n
=

 B
it

R
ef

er
en

ce

Figure 6.7: Equalization results from one input channel with time diversity.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Yes

No

32 Bit Errors

1968 Correct Bit Decisions

Symbol Index

B
it

D
ec

is
io

n
=

 B
it

R
ef

er
en

ce

Figure 6.8: Equalization results from two input channels (spatial diversity).

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

99

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Yes

No

20 Bit Errors

1980 Correct Bit Decisions

Symbol Index

B
it

D
ec

is
io

n
=

 B
it

R
ef

er
en

ce

Figure 6.9: Equalization results from four input channels (spatial and time
diversity).

from the fine tuning of the various parameters involved with selecting equalizer

taps.

Testing the system’s functionality for spatial diversity involves utilizing the

DAT’s left and right channels that contain recordings from two physically separated

hydrophones (sensors). The test layout illustrated in Figure 6.3 utilizes a front-end

module on DSP 0, Cluster 2 to perform calculations for one sensor and pass the

raw data along to DSP 0, Cluster 3 using a send_to_back option in the link port

setup. The second front-end module on DSP 0, Cluster 3 performs calculations

for the second sensor. Both front-end modules send data to the channel combiner

module on DSP 1, Cluster 1. The results of a spatial diversity test are presented

in Figure 6.8. With only 32 bit errors, this is clearly an improvement over both

the single channel and time diversity results. Again, further fine tuning is likely

to result in even lower bit error rates.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

100

Combining both spatial and time diversity serves to further lower bit errors.

Figure 6.9 shows that two spatial diversity inputs, each using time diversity, brings

the number of bit errors down to 20.

Further tests of the entire system were conducted using the Morocco II’s

front panel LEDs. Unlike the equalizer benchmark testing, these timing tests

could not be done using the ADADIO board’s DAC since the m2_drv_bb_sim.c

program being used to read incoming data ties up the processor common bus.

That leaves the front panel LEDs (one for each processor) as the only real-time

diagnostic output. The first test conducted with the LEDs involved having the

channel combiner turn its LED on whenever it entered the “peak too old” portion

of the “Ping Synchronization” state. This provided a visual representation of

how often the system was not detecting synchronization pings. As was expected,

the LED would occasionally flash when running the system with input from the

DAT. This indicates that every so often a ping was weak enough to fall below the

detection threshold. If the LED had been flashing more frequently there would

have been concern for lost detections and the detection threshold could have been

lowered to compensate.

A similar test was done using the LED to indicate whenever synchronization

had been lost, requiring the sensor to be sent back to the “Ping Synchronization”

state. Again, the LED would light occasionally but not often enough to indicate

a problem. As desired, playing a portion of the DAT without telemetry data kept

the LED constantly illuminated.

Another “LED test” involved turning on the LED whenever the “Watch for

Detection” state picked up a detection. The LED was then turned back off at the

beginning of a new input data buffer. This test resulted in the LED blinking on

once per second indicating that the system was indeed picking up detections at the

expected rate for one physical input channel. A very similar test was performed

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

101

with the LED being turned on whenever an equalizer job was submitted. Again,

the flashes were spaced at one second intervals as expected.

6.3 Conclusions and Future Work

The above tests verify that the UDAT system functions properly on the

Morocco II platform. However, there are still several variables such as the detection

threshold and tap size scaling factors that require fine tuning to achieve optimal

system performance.

One example of parameter fine tuning was discovered during the testing

disclosed in Section 6.2.2. It was found that it is desirable to place a limit on

the number of sparse feedback taps generated by the channel combiner. Since

the sparse feedback tap calculation algorithm (Section 5.4) utilizes peaks in the

correlator waveform to place taps, it is possible for it to start including “noise” if

the number of sparse feedback sections is too large. Observation of the target ID

correlation waveforms (such as those shown in Figure 6.5) indicate that one or two

sparse feedback sections should be sufficient for most situations.

As was discussed in the beginning of Chapter 4, the RLS algorithm was

chosen to update the equalizer weight vector in this prototype implementation.

Benchmarks conducted on this equalizer design (see Section 4.5) revealed that

the computational complexity of the RLS algorithm limits real-time operation to

about 64 taps. Recall from Table 4.2 that a 64 tap equalizer running on one of the

Morocco II board’s eight 40 MHz 21060 SHARC processors requires 4.59 seconds

per job. Therefore, real-time operation would require five equalizers (the maximum

available since the remaining three processors are being used by other modules).

The 64 tap limit is likely to result in performance limitations. To avoid

such limitations, a more computationally efficient algorithm such as the Fast

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

102

Transversal Filters (FTF) algorithm proposed in [4] must be implemented on a

SHARC processor.

Error-correction encoding and decoding should also help lower error rates.

Current receiver implementations all place error-correction decoding on a remote

host. A faster equalizer algorithm should also allow time for a convolutional

decoder to be integrated with the equalizer.

NUWC already has plans to move this system from the Morocco II 21060

platform to other SHARC platforms with faster processors. Faster processors will

help reduce the equalizer computation time but many of the other platforms such

as the Hammerhead [7] have fewer processors. So a faster equalizer algorithm will

still be required. The faster processors should allow multiple front-end modules to

be run on one processor. Such an arrangement would be beneficial in situations

utilizing spatial diversity as it would free up a processor that could then be used

to run another equalizer module.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

103

REFERENCES

[1] S. M. Jarvis, The Underwater Digital Acoustic Telemetry (UDAT) System
User’s Manual. Naval Undersea Warfare Center, Newport, Rhode Island,
1997.

[2] J. A. Rice, “Telesonar signaling and seaweb underwater wireless networks,”
tech. rep., Space and Naval Warfare Systems Center, San Diego, California,
2000.

[3] D. Carvalho, F. Blackmon, and R. Janiesch, “The results of several acoustic
telemetry tests in both shallow and deep water,” tech. rep., Naval Undersea
Warfare Center, Newport, Rhode Island, 1995.

[4] S. M. Jarvis and N. A. Pendergrass, “Implementation of a multichannel
decision feedback equalizer for shallow water acoustic telemetry using a stabi-
lized fast transversal filters algorithm,” tech. rep., Naval Undersea Warfare
Center and Dept of Electrical and Computer Engineering University of
Massachusetts, Dartmouth, Newport, Rhode Island, 1995.

[5] S. M. Jarvis, F. Blackmon, K. Fitzpatrick, and R. Morrissey, “Results from
recent sea trials of the underwater digital acoustic telemetry system,” tech.
rep., Naval Undersea Warfare Center, Newport, Rhode Island, 1998.

[6] Spectrum Signal Processing, #200-2700 Production Way Burnaby, B.C. V5A
4X1 Canada, Morocco 2 V8 Carrier Board Technical Reference, 1999.

[7] BittWare, Inc., 33 N Main St. Concord, NH 03301, Hammerhead-PCI User’s
Guide, 2000.

[8] Wideband Computers, Inc., 1350 Pear Avenue Mountain View, CA 94043,
ADSP-21K Optimized DSP Library User’s Manual, 1999.

[9] PLX Technology, Inc., 870 Maude Avenue Sunnyvale, California 94085, PCI
9080 Data Book, 2000.

[10] Analog Devices, Inc., One Technology Way P.O. Box 9106 Norwood, MA
02062-9106, Visual DSP ++ Getting Started Guide for ADSP-21xxx Family
Tools, 2000.

[11] White Mountain DSP, 20 Cotton Road Nashua, New Hampshire 03063,
Mountain-ICE Emulator Hardware User’s Guide, 2000.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

104

APPENDIX A

Memory Usage and Allocation

A.1 Channel Combiner Memory Usage

The channel combiner must store two equalizer job structures, each of which

contains one second’s worth of data from up to four input channels. The memory

required to store each structure is listed in Table A.1. Storing two such structures

(for the current and pending jobs) requires a total of 64,080 words. The 21060 and

21160 SHARC processors have 4 Mbits of internal memory that is divided into

two 2 Mbit blocks. When used to store 32 bit words, these blocks have a capacity

of 64 K (65,536) words. Therefore, the Linker Description File (LDF) used in

conjunction with the channel combiner sets aside one complete block for the Data

Memory Data Area (DMDA) used to store the equalizer jobs.

In addition to the equalizer jobs, the channel combiner must also store

information required to calculate tap sizes and locations for the equalizer. That

data is stored in the scratch space structures described in Chapter 5. Table A.2

lists the memory used to store each scratch space. (*) Note that the list size of 31

entries is only a typical size.

Since each job structure (current and pending) is accompanied with a corre-

sponding scratch space, two scratch spaces must be stored which requires 1,668

words.

The channel combiner is equipped to receive data from two physical sensors.

That data is transferred in ping pong buffers. The memory used by each front-end

sub-structure (ping pong buffer) is listed in Table A.3. These two ping pong buffers

(totaling 468 words) are stored within a sensor structure that also contains about

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

105

Variable Name Data Type Size Memory Words
pop[] int 1 x 4 4
half[] int 1 x 4 4
det[] int 1 x 4 4
aborted[] int 1x4 4
L int 1 1
M int 1 1
M2[] int 1 x 10 10
sumM2 int 1 1
lenM2 int 1 1
M2OFF[] int 1 x 10 10
v[][] cplx float 4 x 4000 32000
Total 32040

Table A.1: Memory used by the equalizer job structure.

Variable Name Data Type Size Memory Words
dir_path[] float 1 x 210 210
list 4-element 1 x 31* 124

structure
pointers[] int 1 x 500 500
Total 834

Table A.2: Memory used by the scratch space structure.

Variable Name Data Type Size Memory Words
length int 1 1
td_present int 1 1
sensor_id int 1 1
corr[] float 1 x 60 60
TID[] int 1 x 60 60
demod[] cplx float 1 x 60 120
Total 243

Table A.3: Memory used by the front-end sub-structures.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

106

20 other scalar elements, some of which are listed in Table 5.1. Therefore, storing

two such sensor structures (one for each sensor) requires a total of 1,012 words.

Both the sensor data structure (1,012 words) and the scratch spaces (1,668

words) are stored in the Program Memory Data Area (PMDA). Since the LDF sets

aside 32 K words in the PMDA there is plenty of space to store these structures.

The LDF used with the channel combiner defines the following sizes:

• 16 K C code space on block 0

• 32 K PMDA on block 0

• 4 K stack on block 0

• 4 K heap on block 0

• 64 K DMDA on block 1

A.2 RLS Equalizer Memory Usage

Similarly, the RLS equalizer must also store large quantities of data. Storage

space for the raw input data and the correlation matrix, inv_R, account for the

majority of the equalizer’s memory usage. Unlike the channel combiner, the

equalizer receives information that can be used to calculate the memory require-

ments of a particular job. Therefore, the equalizer is able to use dynamic memory

allocation to store most of its data on the heap. Table A.4 lists the items that the

equalizer allocates on the heap. Since the sizes of these elements are variable the

values in the table are calculated based on a typical maximum of 140 taps (L = 20

feedforward, M = 20 feedback, and 100 sparse feedback taps in 10 sections). The

equalizer’s LDF file sets aside a 56 K word heap to store this data.

The equalizer must also store a local copy of the incoming job which contains

the raw input data. As was shown in Table A.1, these equalizer jobs require 32,040

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

107

Variable Name Data Type Size Memory Words
d_ref2[] cplx float lenM2 (10) 20
W_k[] cplx float taps (140) 280
U_k[] cplx float taps (140) 280
a[] cplx float div * L (80) 160
b[] cplx float M (20) 40
b2[] cplx float sumM2 (100) 200
inv_R[][] cplx float taps x taps (19600) 39,200
invR_Uk[] cplx float taps (140) 280
v_k[][] cplx float div * L (80) 160
d_k[] cplx float M (20) 40
d_k2[] cplx float lenM2 * maxM2 (400) 800
q2[] cplx float lenM2 (10) 20
err[] (optional) cplx float lenV/2 (2000) 4000
Total 45,480

Table A.4: Equalizer memory allocated on the heap.

words of storage space. Therefore, the equalizer’s LDF file creates a 40 K (40960)

word PMDA in which to store this data along with the equalizer’s output decision

(8000 words). The LDF used with the equalizer defines the following sizes:

• 16 K C code space on block 0

• 40 K PMDA on block 0

• 4 K DMDA on block 1

• 4 K stack on block 1

• 56 K heap on block 1

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

108

APPENDIX B

Software Configuration

B.1 Front-End Module Parameters

The front-end modules each have a Run_Time_Parms data structure that

contains user selectable run-time parameters. The contents of this structure are

listed in Table B.1.

Parameter Name Description Default Value
carrier_frequency Carrier frequency (Hz) 12,500
tid_A First TID for synch ping 1
tid_B Second TID for synch ping 2
sensor_id Hydrophone ID number 100
vic_channel VIC input channel 1
send_to_back Pass data through to

another processor false
lp_xmt Link port to use with

send_to_back 5
pilot_detection_factor Pilot detection factor 0.02
pilot_location Pilot tone above/below

the carrier frequency below (0)
output_destination DSP ID of the channel

combiner processor 3
phase_jam_flag Phase jamming as described

in Section 3.7 off (0)

Table B.1: Front-end module run-time parameters.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

109

B.2 RLS Equalizer Module Parameters

The equalizer modules also contain user selectable run-time parameters

shown in Table B.2.

Parameter Name Description Default Value
lmda RLS forgetting factor 0.995
K1 Phase locked loop

tracking constant 1 0.01
K1 Phase locked loop

tracking constant 2 0.001
lp_rcv Link port connected to

the channel combiner 2

Table B.2: RLS equalizer module run-time parameters.

B.3 Channel Combiner Parameters

The channel combiner software has both compile-time and run-time param-

eters. The compile-time flag TIME_DIV (found in chan_combiner.c) is used to

enable time diversity operation. When TIME_DIV is disabled, the channel combiner

operates only in spatial diversity mode and treats consecutive data frames as new

messages. When TIME_DIV is enabled, the channel combiner operates in time

diversity mode and treats pairs of consecutive data frames as time diversity pairs.

Note that when the channel combiner is operating in time diversity mode it is still

capable of handling spatial diversity inputs as well.

Additional compile-time parameters for the channel combiner are listed in

Table B.3.

The run-time parameters for the channel combiner are listed in Table B.4.

Note that num_sensors has a default value of either 1 or 2. One sensor can allow

the system to operate in time diversity mode. At least two sensors are required to

operate in spatial diversity (or both time and spatial diversity) mode.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

110

Parameter Name Description Default Defined In
Value File

TIMEOUT_LIMIT Timeout limit used in
“Watch for Detection” 50 msec job.h

LIST_SIZE Element count of the list
used in “Build Sparsing List” 31 job.h

MIN_SECT Minimum number of taps
in one sparse feedback section 5 calc_taps.c

Table B.3: Channel combiner module compile-time parameters.

Parameter Name Description Default Value
det_thresh Detection threshold 2000
tap_thresh Tap threshold (see

Section 5.4 1000
ff_scale Feedforward tap scaling factor 5
fb_scale Feedback tap scaling factor 1
sp_fb_taps Upper limit on number of

sparse feedback sections 1
num_sensors Number of diversity input

sensors supplying data to
the channel combiner 1 or 2

num_equalizers Number of equalizers connected
to the channel combiner 4

lp_rcv[] Vector of link ports connecting
the channel combiner to front-ends [1 0]

lp_xmt[] Vector of link ports connecting
the channel combiner to equalizers [2 3 4 5]

Table B.4: Channel combiner module run-time parameters.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

111

BIOGRAPHY OF THE AUTHOR

Raymond McAvoy was born in Houlton, Maine on September 10, 1976. He

received his high school education from Katahdin High School in Sherman, Maine

in 1995.

He entered the University of Maine in 1995 and obtained his Bachelor of

Science degree in Electrical Engineering in 1999.

In June 1999, he was enrolled for graduate study in Electrical Engineering

at the University of Maine and served as a Research Assistant. Current research

interests include communications and signal processing. He is a member of Tau

Beta Pi, and Eta Kappa Nu, and his interests include metalworking and restoring

classic autos.

Raymond is a candidate for the Master of Science degree in Electrical

Engineering from The University of Maine in May, 2002.

University of Maine MS Thesis
Raymond A. McAvoy, May, 2002

112

	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Background
	Purpose of the Research
	Thesis Organization

	UDAT System Overview
	UDAT Receiver Modules
	Sensor, Channel, and Job Notation
	Data Frame/Modulation Format
	TID Ping
	Quiet Times
	Modulated Data

	Receiver Front End
	Signal Format
	Front End Tasks
	Front End Overview
	Calculation of the Complex Representation
	Doppler Tracking
	Complex Representations of Bandpass Signals
	Time Scaling of Signals
	Nonuniform Sampling of x(t)
	A Phase Locked Loop to Adjust the Sample Rate
	Selection of Loop Filter Coefficients
	Doppler Tracking PLL Summary

	Nonuniform Sampler Implementation
	Filter Designs

	Lowpass and Matched Filters
	Frame Synch Ping Correlation

	Adaptive Feedback Equalizer
	General Equalizer Algorithm Overview
	Equalizer Implementation
	Vector and Matrix Storage
	Initializing Vectors and Matrices
	Copying Sections of Vectors and Matrices
	Dot Products
	Matrix - Vector Multiplication
	RLS Correlation Matrix Update

	Equalizer Front End
	Equalizer Testing and Verification
	RLS Equalizer Benchmarks
	41 Taps
	62 Taps
	104 Taps
	Benchmark Summary

	Channel Combiner
	Interface to Front-End Modules
	Equalizer Job Queuing
	Equalizer Jobs
	Job Queuing Methods
	Common Memory Transfer Theory of Operation
	Link Port Transfer Theory of Operation

	State Machine Implementation
	Overall Status
	Sensor State Machine
	Ping Synchronization
	Get Ping TID
	Wait for Ping
	Watch for Detection
	Record Direct Path
	Build Sparsing List
	Record Modulated Data

	Job State Machine
	Abort Channels
	Calculate Taps
	Check Send
	Send Job

	Equalizer Tap Calculations
	Tap Selection Theory of Operation
	The Linked List Structure
	Maintaining the List
	Selection of Sparse Tap Sizes and Locations

	Channel Combiner Testing and Verification
	Ping Synchronization Testing
	Watch for Detection Testing
	Build Sparsing List Testing
	Calc Taps Testing
	Overall Channel Combiner Testing

	System Testing and Conclusions
	Test Setup Configuration
	System Testing Procedures and Results
	Front-End Module Testing
	Overall System Testing

	Conclusions and Future Work

	REFERENCES
	APPENDICES
	 Memory Usage and Allocation
	Channel Combiner Memory Usage
	RLS Equalizer Memory Usage

	 Software Configuration
	Front-End Module Parameters
	RLS Equalizer Module Parameters
	Channel Combiner Parameters

	BIOGRAPHY OF THE AUTHOR

