
ECE271: Microcomputer Architecture and Applications — University of Maine

Lab #9: Input Capture and Distance Sensor
Week of 8 April 2019

Goals
1. Understand input capture function of a timer.
2. Handle different events in the interrupt service routine.
3. Handle timer counter underflow and overflow.
4. Use a timer to measure the timestamp of a signal edge external to the microprocessor.

Pre-lab
1. Complete the pre-lab before attending lab. The pre-lab is in a separate pdf file, found on the website.

Lab Procedure
The first part of this lab is using input capture with the TIM4 timer to measure a 1Hz external signal. The
second part is using input capture to measure distance using an ultrasonic sensor.

Part A – Initial Setup
1. This lab will probably be easiest if you use Lab#8 as a starting point, as you can adjust the existing

timer code. (It should still be possible to do the lab even if you did not do Lab#8 yet).

2. If you’re using Linux, I’ve posted an updated template to the website that has some more definitions
in the header file that will be helpful with this lab.

Part B – Set the board to use the 16MHz HSI clock
1. For this Lab we will use the 16MHz HSI clock on the board.

2. Modify the System_Clock_Init(); function that gets called at the beginning of main()

(a) Enable the RCC_CR_HSION field in the RCC->CR register.

(b) Wait for the RCC_CR_HSIRDY field in RCC->CR to go high.

(c) Select HSI as the system clock source by setting the SW field in the RCC->CFGR register to 01.
Do this by clearing out the RCC_CFGR_SW field and making sure RCC_CFGR_SW_HSI is set.



Figure 1: Timer setup for lab.

Part C – Set up GPIO PB6 to use TIM4_CH1
1. Figure 15-23 in the textbook has the flowchart for the next few sections. Example 15-7 has example

code.

2. First configure the GPIO PB6 pin

(a) Make sure GPIO port B clock is enabled in RCC_AHBENR_GPIOBEN.

(b) Set GPIOB pin 6 to be alternate function, function type TIM4_CH1 (see textbook Appendix I to
see which value this is).

Part D – Configure TIM4_CH1 for Input Capture
1. Enable the clock of timer 4 (RCC_APB1ENR1_TIM4EN)

2. Set the prescaler register TIM4->PSC so that it divides the 16MHz clock down to 1MHz

3. Set the auto-reload register TIM4->ARR to the maximum 16-bit value

4. Set the direction of channel 1 as input, and set input to 1, so value 01 in the CC1S fields in TIM4->CCMR1

5. Set the input filter duration to 0 (bit TIM_CCMR1_IC1F) in TIM4->CCMR1

6. Set the capture to be on both rising and falling (so value 11) in TIM4->CCER. You do this by setting
bits TIM_CCER_CC1P and TIM_CCER_CC1NP

2



7. Clear the input prescaler so that we capture each transition: TIM4->CCMR1 bit TIM_CCMR1_IC1PSC

8. Enable capture for Channel 1: TIM4->CCER bit TIM_CCER_CC1E

9. Enable capture interrupt generation for TIM4 Channel 1: TIM4->DIER bit TIM_DIER_CC1IE

10. (This one is not in the textbook example) we will want to enable the overflow interrupt TIM4->DIER
bit TIM_DIER_UIE

11. Enable timer4: TIM4->CR1 bit TIM_CR1_CEN

12. Set the priority of the TIM4_IRQn interrupt to 0 (highest priority) using NVIC_SetPriority()

13. Enable the Timer4 interrupt in the interrupt controller using NVIC_EnableIRQ()

Part E – Create a Timer Interrupt Handler for TIM4
1. See Example 15-6 in the textbook

2. Add (or on Linux, edit) the function TIM4_IRQHandler()

3. The code described above will generate interrupts whenever a rising/falling transition happens.

4. We set the UIE bit in the TIM4->DIER register, which also calls the interrupt handler when an over-
flow/underflow happens (in our case, after the count hits 65535us).

5. To find out what kind of event triggered the overflow, you can check the TIM4->SR register.

(a) If UIF is set, then it was an overflow/underflow

(b) If CC1F is set, it was an input capture event.

6. Before exiting the handler, you will need to acknowledge (ACK) the interrupt. Otherwise when you
exit the interrupt will immediately trigger again. The CC1F bit is automatically cleared if you read
TIM_CCR1 but you must manually clear the UIF flag.

7. For this lab you will need to track the number of overflows that happen to properly measure the capture
time.

8. The code in the textbook keeps track of the signal polarity, and calculates pulse_width by sub-
tracting the time the signal went low from the time the signal went high.

9. The above will possibly be wrong if an overflow happens; to account for that keep track of the over-
flows in the overflow handler. Reset this to zero at the high transition, let it count on each overflow,
then when you calculate pulse_width add in the overflow count times the time between overflows
(in our case 0xffff micro seconds).

3



1Hz from
signal generator

10K

PB6

Figure 2: Current limiting resistor.

Part F – Measure a 1Hz Clock Signal
1. Use the function generator in the lab to generate a 1Hz signal, then use input capture to capture it.

2. Hook the output of the generator to pin PB6. To protect the board you can use a 10K resistor to limit
the current as shown in Figure 2. (Note, there has been some trouble with the resistor. Tou can try
connecting the function generator directly to PB6 and your borad will probably be fine).

3. Make sure the signal has a max voltage of 3V

4. View the period of the signal. We can do this by looking at the “pulse_width” variable in memory.
The pulse width should be the length in us of the high pulse, assuming a 1Hz signal with 50% duty
cycle it should be roughly 500000. For the checkoff you will use the debugger to show the TA what
value you measure.

5. Showing the value on Keil:

(a) Enter the debugger

(b) Add a “watch” for the pulse_width variable

(c) You can do this by the “View” than “Watch Window”

(d) The watch is added at the bottom of the screen. Double click the expression name and put
“pulse_width” in there.

(e) Now, as the code runs, it should update the value on the fly.

6. Showing the value using Linux:

(a) Flash your program and leave openocd running (if you flash with “make flash” it will do this for
you)

(b) From another window type the following commands:
gdb-multiarch ./lab9.elf
target remote localhost:3333
monitor reset halt continue

(c) Now your code should be running. In the debugger window press control-C to temporarily halt
things. Then you can print the current value by typing:
print pulse_width
and it should show the current value of the variable.

4



Part G – Ultrasonic Distance Sensor
1. Hook up the ultrasonic distance sensor

(a) Connect Vcc on the sensor to EXT_5V

(b) Connect GND to a ground connector

(c) Connect Trigger to PE11

(d) Connect Echo to PB6

2. The sensor runs at 5V. It can be triggered by a 3.3V pulse, and although it’s probably not the best for
the STM board, it seems as though the input is 5V tolerant and can handle that as input.

3. Generate the 10us pulse on trigger on PE11 (you did these calculations in the prelab). This will trigger
an ultrasonic burst of 40kHz audio.

(a) Put the values from the prelab in to enable TIM1.

(b) Be sure you are setting up Channel 2 for all the settings! The last lab we used Channel 1 so
things are slightly different.

(c) After the init be sure to enable the counter by setting TIM_CR1_CEN in TIM1->CR1.

(d) If you want to verify the signal is working, hook it to the oscilloscope and make sure you are
getting a 10us pulse every 65ms on PE11.

4. Conduct timer capture on PB6 and get the return signal. The result will be a square wave proportional
to the distance to the nearest object.

(a) The return on the ECHO pin will range from 150us to 25ms (38ms if nothing in range).

(b) To calculate the distance:
distance(inches) = time(µs)

148

distance(cm) = time(µs)
58

(c) Store the result in an integer variable.

(d) For the checkoff you will show the TA the result in the debugger. Directions for this should be
similar to those for measuring the 1Hz signal

Part H – Something Cool
Do something cool! You can come up with something on your own, but here is a list of ideas you can use.

1. Print the distance to the LCD

2. Have the LEDs turn on/off at certain distance cutoffs (for example: put your hand closer than 3feet
and the red LED comes on, closer than 1 foot and the green LED comes on)

5



Lab Demo
1. Submit your code

• Complete a README with the post-lab answers.

• Make sure the code is properly commented.
This includes a header at the top of your main.c with your name and a brief summary of the lab.

• Check your code and README into your gitlab tree.

2. Demo your implementation to your lab TA.

(a) Show your 1Hz result.

(b) Demonstrate the ultrasonic sensor.

Post-Lab
• Place your answers to the question in a file Readme.md

• Submit with your code via the gitlab server.

• Questions:

1. What is your accuracy when measuring the 1Hz square wave?

2. Place an object at a 1 foot distance. How accurate is the result?

6


