
ECE 271 – Microcomputer
Architecture and Applications

Lecture 6

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

7 February 2019

http://web.eece.maine.edu/~vweaver

Announcements

• Read Chapter 14.9 for the Lab

• Read Chapters 3+4 to learn about ARM assembly

1

Lab#3, Keypad scanning

• Did you already do this in ECE177?

• Pre-lab already posted. Very straightforward.

Do not be lulled into complacency! Lab itself a bit

tricky.

• Actual part have to put wires on a breadboard, some

resistors

Assume everyone knows how breadboards work?

• Be sure to bring in a breadboard from previous classes

and jumper wire.

2

It might be handy to have a second breadboard (give

them out?)

• Keypads – some have 3 columns, some 4. Work the

same, just can’t type ABCD

3

Keypad Scanning

• With 16 buttons, how many GPIOs do you need? By

scanning only need 4+4=8

• Column pulled high to 3.3V

• First set row to 0b1111, then read out. If all 0b1111 out

it means nothing pressed

• If pressed, then need to try each row one at a time to

see what is pressed

• What happens if two keys pressed?

4

LCD Output

• Use your working code from Lab#2, specifically the

LCD Display String() code

• First step is to wire up things and just read out.

I made a first step where I printed the binary values to

be sure switch hooked up right.

• How do you do that? Lots of ways
char string [7]; // why 7?

string [6]=0; // why?

string [0]=’X’;

string [1]=(((GPIOA ->IDR)&(1<<5))>>5)+’0’;

string [2]=(((GPIOA ->IDR)&(1<<5))>>5)?’1’:’0’;

• Then once you can see the keypad is working, go in and

5

write the code that scans rows/columns and prints the

proper character to the LCD.

6

Back to Assembly Language

7

Other math operations

• Note: can use ’S’ and immediate with all of these too

• adc r0,r1,r2 – add with carry: r0=r1+r2+C

• sub r0,r1,r2 – subtract: r0=r1-r2

• sbc r0,r1,r2 – subtract with carry (borrow): r0=r1-r2-

(NOT carry)

• rsb r0,r1,r2 – reverse subtract: r0=r2-r1

8

Bitwise

• and r0,r1,r2 – bitwise and: r0=r1 AND r2

• orr r0,r1,r2 – bitwise or: r0=r1 OR r2

• eor r0,r1,r2 – exclusive or: r0=r1 XOR r2

• orn r0,r1,r2 – or with inverse: r0=r1 OR (1’s complement

r2)

• bic r0,r1,r2 – bit clear (and not)

9

Shift Instructions

• Note: carry and N/Z only updated if the ’S’ variant used

• LSL r1,r2 – logical shift left (shift in zeros)

a shift left by one is the same as multiply by 2

high bit shifted off goes into carry flag

• LSR r1,r2 – logical shift right

a shift right by one is the same as divide by 2

0 shifted in on left, low bit shifted out into carry

• ASR r1,r1 – arithmetic shift right

sign (high bit) shifted in (preserving sign)

10

low bit goes into carry

• ROR r1,r2 – rotate right

lo bit into carry and into hi

• RRX r1,r2 – rotate right, extended, so through carry lo

to carry, carry to hi

• Can also shift by immediate, LSR r1,#3

• Is there an ROL? Turns out it ROL by 5 is same as ROR

by (32-5)

• Is there an ASL (arithmetic shift left?) Not needed

• Why into carry? What if want to do 64-bit shift?

Also can be clever and do things that are hard in C, like

11

shift right and test C to see if low bit was 1.

12

Barrel Shifts

• For ALU instructions, and some others.

• The third argument can optionally be shifted by a

constant

◦ add r1,r2,r3 LSR #2

r1=r2+(r3¡¡2)

◦ LSL, LSR, ASR, ROR, RRX

◦ on arm32 could have a 4th register instead of a

constant as shift amount

• Why would you want to do this?

13

Accessing 32-bit values in an array

Hack, really fast multiplies

Example: add r0,r1,r1 LSL #2 is same as r0=r1*5

14

Multiply

• Often relatively slow. Lots of ways to avoid using

Shift/add

• How big is your result? 32bit * 32bit has potentially

64bit result

What happens to the high bits?

• MUL RD,RN,RM = rd=rn*rm (signed)

• UMUL RD,rn,rm = unsigned

15

• MLA rd,rn,rm,ra = multiply/add rd=rn*rm+ra

• MLS rd,rn,rm,ra = multiply./sub rd=rn*rm-ra

• UMULL rdlo,rdhi,rm,rn

• MULL rdlo,rdhi,rm,rn

16

Divide

• SDIV RD,rn,rm = Signed divide rd=rn/rm

• UDIV RD,rn,rm = Unsigned divide rd=rn/rm

• Even slower than mul. Takes a lot of space, not used

often, so some chips leave it off. For example, no divide

on early Raspberry Pi

• For powers of two, can right-shift

• This gives you quotient: what if you want remainder?

◦ If power of two, can use and with divisor - 1:

5/4 : R = 5&(4-1)

17

This is just masking off the bottom bits that get shifted

off.

◦ If have multiply instruction, R = original - (Q *

divisor):

5/4 : Q = 5 - (1*4)

• Other ways to divide? Can multiply by reciprocal. x/10

= x* (1/10). Have to set up the value and rounding

right, but is often faster than dividing.

18

Moves

• MOV r0,r1 – moves (copies) the value in r1 into r0

• MOVN r0,r1 – moves (copies) the 1’s complement

inverse of r1 into r0

19

Thumb-2 12-bit immediates

ADD and SUB can have a real 12-bit immediate (0..4095)

Or you can have flexible immediate (ADD and SUB can

do this too):

• any constant that can be produced by shifting an 8-bit

value left by any number of bits within a 32-bit word

• any constant of the form 0x00XY00XY

• any constant of the form 0xXY00XY00

• any constant of the form 0xXYXYXYXY.

top 4 bits 0000 -- 00000000 00000000 00000000 abcdefgh

20

0001 -- 00000000 abcdefgh 00000000 abcdefgh

0010 -- abcdefgh 00000000 abcdefgh 00000000

0011 -- abcdefgh abcdefgh abcdefgh abcdefgh

rotate bottom 7 bits|0x80 right by top 5 bits

01000 -- 1bcdefgh 00000000 00000000 00000000

...

11111 -- 00000000 00000000 00000001 bcdefgh0

21

