
ECE 271 – Microcomputer
Architecture and Applications

Lecture 8

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

14 February 2019

http://web.eece.maine.edu/~vweaver


Announcements

• Read Chapters 6 and 7

• Wednesday was a snow day. People with Wednesday

lab try to check in code as soon as possible and get lab

checked off when you can.

Also if you need a keypad let me know.

• If you want/need an additional breadboard, you can pick

one up in lab.

1



General Lab Update

• PAPI and good git commit anecdote

2



Control Flow

3



Branches/Jumps

• B – branch always

• BEQ/BNE – branch equal/not-equal – (Z set/clear)

• BCS/BCC (BHS/BLO) – higher or same / lower – (C

set/clear)

• BMI/BPL – minus/plus (N set/clear)

• BVS/BVC – overflow (V set/clear)

• BHI/BLS (c set and z clear) – higher or less/same –(c

clear or z)

• BGE – greater or equal – N set and V set or N clear and

4



V claer

BLT

• BGT – Z clear and either N set and V set, or N clear

and V set

BLE

5



Comparison

• don’t need S flag (always update flags)

• CMP r0, r1 – compare two values, update flags

same as subtract instruction, but result thrown away

• TST r0, r1 – test if bits set

same as and, update flags

• TEQ – test if equal

same as xor, update flags

• What use is TEQ vs CMP? Doesn’t set C or V flags?

6



Conditional Execution

• Note: this is an advanced/obscure technique I am

mentioning for completeness, you don’t have to know

how to use it for this class

• On ARM32 could prefix *any* instruction with condition

flags, i.e.
addeq r1,r2,r3 ; only does the add if Z=1

addmi r1,r2,r3 ; only does the add if N=1

• On Thumb2 they re-used these encoding bits (the left 4

bits of the instruction) to implement the Thumb-2 set,

7



so you cannot do this anymore.

• There is a hack called IT, where you can do up to four

instructions. The condition has to be the same (Then)

or the opposite (Else)
itete cc

addcc r1 ,r2

addcs r1 ,r2

addcc r1 ,r2

addcs r1 ,r2

8



Other Obscure Instructions

9



Sign/Zero Extension

• SXTB – sign extend a byte

• SXTH – sign extend a halfword

• UXTB – zero extend a byte

• UXTH – zero extend a halfword

10



Bit/Byte Reversing

• RBIT – reverse bit oder

• REV – reverse byte order

• REV16 – reverse byte order halfword

11



Nop / Sleep

• nop – no-operation

• wfi – wait for interrupt

• wfe – wait for exception

12



System Registers

• MSR – move from system register

• MRS – move to system register

13



Vector/FP/NEON/DSP

• We might discuss this later in class

14



Example Code Translation – If/Then/Elese

if (x==0) {

y=1;

}

else {

y=5;

}

ldr r0 ,x ; load X into r0

cmp r0 ,#0 ; compare with 0

bne ELSE ; if not equal , then branch ahead to ELSE

mov r1 ,#1 ; load 1 into Y

adr r3 ,y ; pseudo -insn , get address of y in r3

str r1 ,[r3] ; store value to Y

b DONE ; skip ahead to DONE (to avoid else code)

ELSE

mov r1 ,#5 ; load 5 into Y

15



adr r3 ,y ; turns to pc -relative ldr

str r1 ,[r3] ; store out to Y

x

.word 0

y

.word 0

• The label names are arbitrary, you can pick ones that

make sense for you. They don’t have any special meaning

(the assembler will just convert them to numbers)

• “adr” is a pseudo-instruction. The assembler

understands it (load address) but it is not a Thumb-

2 instruction. The assembler will convert this to an

16



actual instruction (in this case probably a LDR with a

PC-relative address)

• When you branch to a label, the assembler turns this

into a jump offset.

So it will really turn into something like ”bne pc+X”

where X is a positive or negative offset that will be added

to the program counter, which will redirect execution to

the new instruction.

• If a branch is not taken, it just “falls through” to the

next instruction in order.

17



Example Code Translation – For Loop

for(i=0;i <100;i++) {

}

mov r0 ,#0 ; init loop index

LOOP

cmp r0 ,#100 ; compare to limit

bge DONE ; if above or equal , done

... ; do whatever code in the loop

add r0 ,r0 ,#1 ; incrememnt index

b LOOP ; branch always back to repeat loop

DONE

18



• again, the labels are arbitrary

• The compiler (if you do gcc -S to see assembly output)

will change this to a while loop.

• Why? Maybe works better for branch predictor?

19



Example Code Translation – While Loop

int x=0;

while(x <100) {

x++;

}

mov r0 ,#0 ; init loop index

b CHECK ; skip ahead to condition check

LOOP

...

add r0 ,r0 ,#1

CHECK

cmp r0 ,#99 ; compare to see if at end

ble LOOP ; if less than equal , branch back to LOOP

20



Example Code Translation – Do - While
Loop

int x=0;

do {

x++;

} while(x <100);

mov r0 ,#0

; this is just like while loop

; but no branch , so always executes once

LOOP

...

CHECK

cmp r0 ,#99

ble LOOP

21



THUMB differences

• Most instructions length 16-bit (a few 32-bit)

• Only r0-r7 accessible normally

add, cmp, mov can access high regs

• Some operands (sp, lr, pc) implicit

Can’t always update sp or pc anymore.

• No prefix/conditional execution

• Only two arguments to opcodes

(some exceptions for small constants: add r0,r1,#1)

• 8-bit constants rather than 12-bit

22



• Limited addressing modes: [rn,rm], [rn,#imm],

[pc|sp,#imm]

• No shift parameter ALU instructions

• Makes assumptions about “S” setting flags

(gas doesn’t let you superfluously set it, causing problems

if you naively move code to THUMB-2)

• new push/pop instructions (subset of ldm/stm), neg (to

negate), asr,lsl,lsr,ror, bic (logic bit clear)

23



New THUMB-2 Instructions

• BFI – bit field insert

• RBIT – reverse bits

• movw/movt – 16 bit immediate loads

• TB – table branch

• IT (if/then)

• cbz – compare and branch if zero; only jumps forward

24



Thumb-2 12-bit immediates

ADD and SUB can have a real 12-bit immediate (0..4095)

Or you can have flexible immediate (ADD and SUB can

do this too):

• any constant that can be produced by shifting an 8-bit

value left by any number of bits within a 32-bit word

• any constant of the form 0x00XY00XY

• any constant of the form 0xXY00XY00

• any constant of the form 0xXYXYXYXY.

top 4 bits 0000 -- 00000000 00000000 00000000 abcdefgh

25



0001 -- 00000000 abcdefgh 00000000 abcdefgh

0010 -- abcdefgh 00000000 abcdefgh 00000000

0011 -- abcdefgh abcdefgh abcdefgh abcdefgh

rotate bottom 7 bits|0x80 right by top 5 bits

01000 -- 1bcdefgh 00000000 00000000 00000000

...

11111 -- 00000000 00000000 00000001 bcdefgh0

26


