ECE 271 — Microcomputer

Architecture and Applications
Lecture 10

Vince Weaver
http://web.eece.maine.edu/~vweaver

vincent .weaver@maine.edu

21 February 2019

http://web.eece.maine.edu/~vweaver

Announcements

e Read Chapter 2, Chapter 16

Lab#4 Notes

e Remember to disconnect your keypad, especially if you
are watching the ODR lines and they aren’t changing.

e You can have more than one branch jump to the same
label. Labels are just placeholders for memory addresses.

e On Kelil, spacing does matter for the assembly
if your code starts to far to the left it will give you an
error as it will think the opcode is a label

Lab#5 Preview

e Stepper motors
e Unlike regular motors, can “step’ a little bit at a time
and accurately set position

e To do this, we will use 4 GPIOs to control things

e The BSRR register makes it a bit easier to set/clear the
GPIO pins at the same time.

e \We will use 4 pins in the GPIOB register

e There will be a pattern we send on the pins that will
cycle through and advance the stepper

-y ;

PB2 | : |

PB3

PB6

PB7 : |

e Stepper motors used when need exact control
Example: Disk |[drive in original Apple Il
Unusual in that it was purely software controlled, leading
to lots of interesting copy protection methods

Program Counter Review

3000010 4990 1dr r1, [pc,#256]
3000012 6ccb 1dr r3, [rl,#76]
3000014 £043

3000016 0302 orr r3,r3,#2
3000018 69c4 str r3, [rl,#76]
3000110 40021000 (constant)

PC i1s at 80000010, so loads the 1ldr instruction f

-y 6

loads the memory value located at address of pc+:
instruction done, incrememnts PC to 8000(
PC 1s at 80000012, so loads the 1ldr instruction :
loads the memory value located at address of ril+
instruction done, increments (this insn was 2 by
PC is at 800000106, so loads the orr instruction
orrs the value in r3 with constant #3, stores in
instruction done, increments PC to 8000018

Number Representation

e Why use Base-2 in computers/digital logic?
Why not Base-3 or Base-47 Or Base-107
e Babbage's difference /analytical engine base-10 computer?
e Octal (useful if multiple of 3 bits), Hexadecimal (useful
if multiple of 4 bits)
e Why are bytes (technically octets) 8-bits?

e What do you call 4-bits? (sometimes a nibble or nybble,
a half-byte)

Unsigned Integers

e What's the biggest number you can represent?
2V — 1 so roughly 4 billion on 32-bit machine
e What happens if you overflow?
Wraps to zero
e What *should™ happen if you overflow?
Is this an error? Should it be?
e What does C do if you overflow?
Wraps to 0.
e What's the maximum size of adding two N bit unsigned

-y 9

integers?
N+1 bits.

Signed Integers

e Sign-magnitude
High bit Is a sign bit
Two zeros? How does that complicate things? Checking
if equal?

e One's complement
negative number Is bitwise-inverse
have to do “end-around carry” (add carry bit to
rightmost bit)

e Two's complement

-y 1

negative number Is inverse, plus one

Can you have 9's complement?
e What does C use?

Implementation dependent (whatever the hardware uses)
e \What does the hardware use?

Most hardware these days Is 2's complement

-y 12

Binary | Sign | One's | Two's
0000 +0 +0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7
1000 -0 -7 -8
1001 -1 -6 -7
1010 -2 -5 -6
1011 -3 -4 -5
1100 -4 -3 -4
1101 -5 -2 -3
1110 -6 -1 -2
1111 ST/ -0 =

13

Two’s complement

e Hardware for addition and subtraction is the same
No need for special subtractor

e Addition/Subtraction/Multiplication of unsigned vs
signed Is mostly the same

e Is this only in binary? Can you do 9's complement with
decimal?

-y 14

The Carry Flag

e Unsigned addition: when two unsigned integers added,
carry happens when result is too big to fit in maximum
integer size (2" — 1)

e Unsigned subtraction: when two unsigned integers
subtracted, borrow happens when result is less than

0 (ARM has no dedciated borrow flag, carry flag is
re-used)

-y 15

The Overflow Flag

e Signed addition: when adding two positive numbers and
wraps to being negative

e Signed addition: when adding two negative numbers and
wraps to being positive

e Signed subtraction: sub pos from neg creates pos result

e sub neg from pos gettig neg result

-y 16

Calculating the Overflow Flag

e Overflow occurs when the carry into the sign bit *differs*
from the carry out of the sign bit

5 0101

+2 0010
7 0111 Cin=0, V=0
5 0101

-y 17

=—=== ========= COUtzo 9 C=O

11 (-5) 1011
9 -7
+10 -6
19(3) -13
15 -1
+14 =2

Cin=1, V=1

1001
+1010

(1)0011 Cin=0,

1111
+1110

C=1
V=1

18

29 -3 (1)1101 Cin=1, V=0

e How does the CPU know if you are doing signed vs
unsigned addition?
It doesn’t. It just always sets the C and V bits.
With two's complement it's up to you to track things if
you care.

e Does the C language track the C and V bits?

/Y 19

Character Encodings

e ASCII — American Standard Code for Inforation

Interchange
Handy that numbers are consecutive, then lower case Is

offset from uppercase
Technically 7-bit. What do you do with 8-bit? Parity?

Extended characters?
e EBCDIC?
e Unicode? 16-bit?
o UTF-87

-y 20

e Emojis?

