
ECE 271 – Microcomputer
Architecture and Applications

Lecture 10

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

21 February 2019

http://web.eece.maine.edu/~vweaver

Announcements

• Read Chapter 2, Chapter 16

1

Lab#4 Notes

• Remember to disconnect your keypad, especially if you

are watching the ODR lines and they aren’t changing.

• You can have more than one branch jump to the same

label. Labels are just placeholders for memory addresses.

• On Keil, spacing does matter for the assembly

if your code starts to far to the left it will give you an

error as it will think the opcode is a label

2

Lab#5 Preview

• Stepper motors

• Unlike regular motors, can “step” a little bit at a time

and accurately set position

• To do this, we will use 4 GPIOs to control things

• The BSRR register makes it a bit easier to set/clear the

GPIO pins at the same time.

• We will use 4 pins in the GPIOB register

• There will be a pattern we send on the pins that will

cycle through and advance the stepper

3

0 1 2 3 4

:____:____: : :

PB2 | : |____:____:

: : :____:____:

PB3 :____:____|

: :____:____: :

PB6 :____| : |____:

:____: : :____:

4

PB7 : |____:____: :

• Stepper motors used when need exact control

Example: Disk][drive in original Apple II

Unusual in that it was purely software controlled, leading

to lots of interesting copy protection methods

5

Program Counter Review

8000010 4990 ldr r1,[pc,#256]

8000012 6ccb ldr r3,[r1,#76]

8000014 f043

8000016 0302 orr r3,r3,#2

8000018 69c4 str r3,[r1,#76]

...

8000110 40021000 (constant)

PC is at 80000010, so loads the ldr instruction there from memory

6

loads the memory value located at address of pc+256, stores in r1

instruction done, incrememnts PC to 8000012

PC is at 80000012, so loads the ldr instruction from memory and decodes

loads the memory value located at address of r1+76, stores in r3

instruction done, increments (this insn was 2 bytes so to 8000016)

PC is at 800000106, so loads the orr instruction from memory and decodes

orrs the value in r3 with constant #3, stores in r3

instruction done, increments PC to 8000018

7

Number Representation

• Why use Base-2 in computers/digital logic?

Why not Base-3 or Base-4? Or Base-10?

• Babbage’s difference/analytical engine base-10 computer?

• Octal (useful if multiple of 3 bits), Hexadecimal (useful

if multiple of 4 bits)

• Why are bytes (technically octets) 8-bits?

• What do you call 4-bits? (sometimes a nibble or nybble,

a half-byte)

8

Unsigned Integers

• What’s the biggest number you can represent?

2N − 1 so roughly 4 billion on 32-bit machine

• What happens if you overflow?

Wraps to zero

• What *should* happen if you overflow?

Is this an error? Should it be?

• What does C do if you overflow?

Wraps to 0.

• What’s the maximum size of adding two N bit unsigned

9

integers?

N+1 bits.

10

Signed Integers

• Sign-magnitude

High bit is a sign bit

Two zeros? How does that complicate things? Checking

if equal?

• One’s complement

negative number is bitwise-inverse

have to do “end-around carry” (add carry bit to

rightmost bit)

• Two’s complement

11

negative number is inverse, plus one

Can you have 9’s complement?

• What does C use?

Implementation dependent (whatever the hardware uses)

• What does the hardware use?

Most hardware these days is 2’s complement

12

Binary Sign One’s Two’s

0000 +0 +0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7
1000 -0 -7 -8
1001 -1 -6 -7
1010 -2 -5 -6
1011 -3 -4 -5
1100 -4 -3 -4
1101 -5 -2 -3
1110 -6 -1 -2
1111 -7 -0 -1

13

Two’s complement

• Hardware for addition and subtraction is the same

No need for special subtractor

• Addition/Subtraction/Multiplication of unsigned vs

signed is mostly the same

• Is this only in binary? Can you do 9’s complement with

decimal?

14

The Carry Flag

• Unsigned addition: when two unsigned integers added,

carry happens when result is too big to fit in maximum

integer size (2n − 1)

• Unsigned subtraction: when two unsigned integers

subtracted, borrow happens when result is less than

0 (ARM has no dedciated borrow flag, carry flag is

re-used)

15

The Overflow Flag

• Signed addition: when adding two positive numbers and

wraps to being negative

• Signed addition: when adding two negative numbers and

wraps to being positive

• Signed subtraction: sub pos from neg creates pos result

• sub neg from pos gettig neg result

16

Calculating the Overflow Flag

• Overflow occurs when the carry into the sign bit *differs*

from the carry out of the sign bit

5 0101

+2 0010

===== ====== Cout=0,C=0

7 0111 Cin=0, V=0

5 0101

17

+ 6 0110

==== ========= Cout=0,C=0

11 (-5) 1011 Cin=1, V=1

9 -7 1001

+10 -6 +1010

==== === ====== Cout=1, C=1

19(3) -13 (1)0011 Cin=0, V=1

15 -1 1111

+14 -2 +1110

18

==== === ====== cout=1, C=1

29 -3 (1)1101 Cin=1, V=0

• How does the CPU know if you are doing signed vs

unsigned addition?

It doesn’t. It just always sets the C and V bits.

With two’s complement it’s up to you to track things if

you care.

• Does the C language track the C and V bits?

19

Character Encodings

• ASCII – American Standard Code for Inforation

Interchange

Handy that numbers are consecutive, then lower case is

offset from uppercase

Technically 7-bit. What do you do with 8-bit? Parity?

Extended characters?

• EBCDIC?

• Unicode? 16-bit?

• UTF-8?

20

• Emojis?

21

