
ECE 271 – Microcomputer
Architecture and Applications

Lecture 11

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

26 February 2019

http://web.eece.maine.edu/~vweaver

Announcements

• Read Chapters 7 and 8

• Midterm, likely 12 March (two weeks)

more info on that as it gets closer

1

Lab #5 Update

• Simple bugs continue to be the biggest problem

If you are stuck, ask a TA or me! Don’t waste more

than an hour or so if you are really stuck.

• Don’t use floating point in the lab

It might work, but we haven’t learned about it yet.

• Multiply/divide ordering in C

◦ steps=(512*degrees)/360;

◦ steps=512*(degrees/360);

◦ are the above equivalent? Mathematically, yes.

2

In C, no. When using 32-bit integers, a number like

270/360 is going to evaluate to ”0.75” which C will

truncate to ”0”, not giving the result you expect.

3

Character Encodings

• What makes a text character?

◦ Our processor only understands binary.

◦ The letter ’A’ we say is 65 (0x40).

◦ Is that implicit in the processor or in the nature of the

letter ’A’?

◦ No, it’s arbitrary

◦ Why have a standard like this? Otherwise it would

be impossible to communicate text! Every computer

would treat letters differently.

4

• ASCII – American Standard Code for Information

Interchange

◦ Standard from the 1960s

◦ Nice features

◦ Numbers are consecutive, from 0x30-0x39 (easy to

convert to decimal)

◦ Letters are consecutive

◦ Lower case has constant offset from uppercase, easy

conversion

◦ Technically 7-bit. What do you do with 8-bit? Parity?

Extended characters?

5

◦ Also control chars in bottom. Things like BELL

(control-G), linefeed, carriage return, escape, etc.

• EBCDIC – IBM’s standard. There were others. Some

put char in 6 bits.

• Old systems missing chars? Uppercase only? How did

people cope? How did the C compiler cope? Trigraphs.

• What about non-English languages. ess-tset? Umlauts?

• Unicode? 16-bit?

wchar t? Windows? Java? Will all languages fit in

16-bits? no

• UTF-8?

6

Top bit 1 indicates more than 1-byte long, can encode in

up to 4 bytes. Regular C string manipulation will work

on UTF-8, 7-bit ASCII is a subset

• Combining chars, security aspect of letters that look the

same

• Politics involved.

• Emojis?

7

Functions/Subroutines

• Why use them?

8

Sample C

int sum(int a, int b) {

return a+b;

}

int main(int argc , char **argv) {

int result;

result=sum (1 ,2);

}

9

Sample Assembly

mov r0 ,#1

mov r1 ,#2

bl sum

sum:

add r0 ,r1 ,r2

blx lr

10

Subroutines on ARM

• bl branch and link instruction

◦ Sets the link register LR (r14) as the memory address

of the next instruction immediately after the BL (PC+4

on Thumb-2)

◦ Adjust the PC to be the memory address of the first

location of where we want to transfer execution

• After executing, LR has the return address

11

Returning from a Subroutine

• Use the BX LR instruction, which says to branch to

the address located in the LR register. (the X is for

exchange; historical THUMB reasons)

• Alternately, if the LR register is on top of the stack, you

can POP {PC}

; p164

12

The ABI – The Application Binary Interface

• A Document, produced often by the processor maker

• An agreement of how functions / code talk to each other

• A common standard so compilers, libraries, and code can

call each other and know how to set things up

• Useful to have for your own code. Might be slightly

less efficient, but better than for every function you call

having to save/setup different registers

• What kinds of things are included?

◦ What registers to put things in? Register allocation?

13

◦ Alignment of stack (4 bytes? 8 bytes?)

◦ How to pass 8/16/32/64 byte values

◦ How to pass floating point values

◦ Where does the return value go?

◦ System calls

◦ Frame pointer

14

ARM ABI

• On Linux there have been at least 4

• armbe – big endian

• armle – little endian

• EABI – extended (new) ABI

• armhf – EABI but fancier (hard) floating point support

15

Calling Conventions

• r0/r1/r2/r3

◦ parameters/scratch

◦ caller saved, so if you want the value in say r3 to be the

same after a function call you have to save it/restore

it to memory

◦ r0/r1 also used as return value from function

• r4/r5/r6/r7/r8/r10/r11 = variables

◦ callee saved. You can count on this having the same

value after a function as before. If you are in a function

16

and want to use it, must save/restore it. Often this

done at function entry/exit

• r9 – implementation dependent (thread-local register?)

• r12 = reserved by linker?

• r13 = stack pointer

• r14 = LR (link register)

• r15 = PC (program counter)

17

Calling Conventions – Corner Cases

• Return value in r0. Might be in r1 or more if bigger than

32 bits

• What happens if more than 4 arguments?

• What happens if more than 32-bits (use 2 registers,

even/odd for 64-bits)

18

Calling Conventions – Corner Cases

• How do you pass something complicated like an array or

struct?

• Call by value or by reference

• Can pass a pointer in a 32-bit register

19

