
ECE 271 – Microcomputer
Architecture and Applications

Lecture 12

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

28 February 2019

http://web.eece.maine.edu/~vweaver


Announcements

• Read Chapters 7 and 8

• Midterm, Tuesday, 12 March

more info on that as it gets closer

1



ECE471 Embedded Systems Preview

• Offered in fall.

• Similar to 271 but we use Raspberry Pi and run Linux.

The operating system makes for easier coding.

• Use higher-level busses to control displays and sensors

(i2c, SPI, 1-wire)

• Mostly in C, one assembly language homework

• Open-ended final project. People choose lots of fun

topics.

• It is true that computer engineers seem to enjoy the

2



class more than electrical engineers (mostly comes down

to if you like programming or not)

3



Lab #5 Update

• Many errors are just obscure C coding issues

• Index variable scoping
int j;

for(j=0;j <100;j++) {

...

for(j=0;j <1000;j++) ; // delay

}

\item Operator precedence

\begin{lstlisting}

if (x & 0x10 ==0) {

// actually is

if (x & (0x10 ==0))

A safe bet is to just use extraneous parenthesis

4



Coding Style

• Some people were asking if we were enforcing coding

style in this class?

• Coding style is one of those things that varies from

person to person and project to project and is hard to

quantify.

• People can be very opinionated.

• Some examples of coding style:

◦ Indentation: tabs vs spaces (and how many)

◦ Width of screen/wrapping: 80 col or more?

5



◦ Variable names: new x size, NewXSize (camel case),

Hungarian Notation (strName) with type info

◦ Length of identifiers (old compilers ignored any past

6)

◦ Curly bracket on same line or next

◦ Header files include bare minimum, or inclulde all

◦ Header files alphabetical, at end, christmas tree (for

git collision reasons)

◦
if (x==0)

if (0==x)

6



Lab #6

• Going to be stepper motor, but in assembly

• I know you hate assembly

• Try out writing functions in assembly

7



Go over global vs local vars

• Memory layout diagram again

• Code/text (usually read only)

• Variable data (globals)

• BSS (uninitialized / zeroed global variables)

usually the OS clears these out, on our system we include

startup code that does this

• Heap (dynamically allocated: malloc or new, grows

“up”

• Stack, typically toward the top of memory, grows down.

8



Temporary variables and local variables

9



The Stack – Review

• Chunk of memory, LIFO.

• On ARM by default grows down, ”Full”

(full means points to last value pushed, empty would

point to next)

• Why does it grow down? Can it grow up?

10



Local Allocation

• Global vs Local variables

• array of size 100.

• sub sp,sp,#400

• r0=sp

• What is it initialized to? Security?

• What must you do before returning?

11



The Stack – Review

• Push – SP=SP-4. [SP]=Rd

• Pop – Rd=[SP]. SP=SP+4.

• Push/Pull multiple. Cheat and restore LR to PC to

return.

12



Examples

•

13



Frame Pointer (r11)

•

14



Leaf Function

• No need to save/restore LR

15



Typical function prolog/epilog

• Save the calleeee saved registers you use

• Allocate any local vars. Use the frame pointer?

• De-allocate local vars

• Restore the callee saved registers

• Return

16



Using the stack

• Writing assem code, run out of regs. Where can you

store value?

• Could store to memory

• Might be easier to just temporarily push/pull on stack

• Less common on machines with less memory pressure

• 6502/x86 do it all the time, less so on ARM

17


