
ECE 271 – Microcomputer
Architecture and Applications

Lecture 13

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

5 March 2019

http://web.eece.maine.edu/~vweaver

Announcements

• Read Chapters 8 + 9

• Midterm, Tuesday, 12 March

more info on that as it gets closer

1

Lab #6 Update

• Stepper motor, but in assembly

• Mostly learning to write functions in assembly

2

Lab #6 – Making code into a function

• Delay code in C

for(i=0;i <6000;i++) ;

• An implementation

mov r5 ,#6000

delay_loop:

subs r5 ,r5 ,#1

bne delay_loop

• A more literal one (it takes longer, why?)

mov r5 ,#0

3

delay_loop:

add r5 ,r5 ,#1

cmp r5 ,#6000

bne delay_loop

• Conversion to function

// Delay , with amount in r0

// Can we keep using r5? What if we didn’t save r5?

// what value would it have on return?

// what happens if we forget to pop?

Delay PROC // PROC not needed Linux

push {r5 ,lr}

mov r5 ,r0

delay_loop:

subs r5 ,r5 ,#1

bne delay_loop

pop {r5 ,lr}

bx lr // return

ENDP

4

Using Arrays in Assembly

int steps [4]={0 x00480084 ,0x00880044 ,0x00840048 ,0 x00440088 };

int current_step ,i;

for(i=0;i<4;i++) {

current_step=steps[i];

}

mov r0 ,#0

loop

ldr r1 ,= steps

ldr r2 ,[r1 ,r0 , LSL 2]

add r0 ,r0 ,#1

cmp r0 ,#4

bge loop

5

steps

DCD 0x00480084 ,0x00880044 ,0x00840048 ,0 x00440088

Note on Linux use .word instead of DCD

6

Recursion

• Very CS thing to do

• Function calls itself

• ECE / embedded not like to do it much. Why?

What happens when run out of stack?

• Can be useful. Think compilers?

• You’ll see it in Google interviews

7

Factorial Example

• n! = n * (n-1) * (n-2) ... * 1

• Any sane person would implement it like
int factorial(int n) {

int result =1;

for(i=1;i<=n;i++) result *=i;

return result;

}

8

Factorial via Recursion

• factorial(0) = 1

• factorial(1) = 1 = 1*factorial(0)

• factorial(2) = 2 = 2*factorial(1)

• factorial(3) = 6 = 3*factorial(2)

9

Factorial Example – C

int factorial(int n) {

if (n<2) return 1;

return (n*Factorial(n -1));

}

10

Factorial Example – Assembler

factorial

push {r4,lr} // save r4 (why?) save lr (why?)

mov r4 ,r0 // copy input arg to r4

cmp r4 ,#2

bge else // if 2 or greater skip ahead

mov r0 ,#1 // otherwise return 1

b factorial_exit

else

sub r0 ,r4 ,#1 // arg is oldarg -1

bl factorial

mul r0 ,r4 ,r0 // return value in r0

// multiply by r4 (which was saved across call)

factorial_exit

pop {r4 ,pc} // why have only one exit to function?

_start

mov r0 ,\#0x3

bl factorial

11

stop

b stop

TODO: draw diagram of stack?

12

Alignment

• Structs and alignment

• Why align variables in memory?

◦ Memory is usually byte-addressable

◦ ints are multi-byte (2, 4, 8 bytes?)

◦ Can you have ints that start at odd addresses?

◦ Older machines – no, caused an alignment fault. Either

a crash, or else software had to slowly work around

issue (do multiple loads, shifts, and ors)

◦ x86 always supported unaligned loads, so to be

13

compatible more systems support it

◦ it can still be bad for performance, especially if cross

a cache line

• If you have something like
struct {

int a;

int b;

int c;

} something;

you can see alignment is easy. Also you can picture what

the assembly looks like to load something.a, something.b

or something.c

• What about
struct {

int a;

14

char b;

int c;

};

The compiler might add padding so int c is properly

aligned.

◦ What is wrong with padding?

Takes more RAM?

Security (what ends up in padding? old data?)

What if you are trying to match hardware registers or

a file format w/o padding?

◦ You can force no padding. On Keil with packed

attribute.

15

◦ On Linux it is struct attribute ((packed))

16

Chapter 9 – 64 bit values

• Adding – use carry bit

• Subtracting

• Multiply?

• Divide?

• Shifting – single shift, through carry

Logical or Arithmetic

• Shifting by arbitrary, shift and mask.
0xdeadbeef 0xc001cafe

shift right by 16

0xdead , 0xbeef , 0xc00l , throw away cafe

0 | (0xdead >>16), (0xbeef < <16)|(0 xcool >>16)

17

