
ECE 271 – Microcomputer
Architecture and Applications

Lecture 15

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

14 March 2019

http://web.eece.maine.edu/~vweaver


Announcements

• Read Chapter 11

• Midterm will be graded soon, not before break though

• Remember this was catch-up Lab week

1



Lab #7 Preview

• Access the timer, in C

2



Timers

• Just a counter. Set up a clock input, then count how

many times it happens.

• Can say, set up a 1MHz clock, then set it to count down

from 1000, when it hits 0 it’s been 1ms

• How do you tell when it hits 0?

• (Things get way more complicated, will cover after

break)

3



Interrupts

• What do you do if you want to see if hardware is ready?

Say the joystick pressed?

• Just have a loop that constantly checks? (polling)

• What’s the downside of polling? (wastes resources, have

to constantly be checking, what if you are busy and miss

something, waste energy/power in tight loop)

• What is the alternative?

4



Interrupts

• When some sort of event happens, it “interrupts” what

the CPU is doing

• Types of interrupts

◦ Internal to CPU

Timer

Illegal instruction

Illegal memory access

◦ Something your code does

System call

5



◦ Something external hardware does

Keyboard press

Network packet comes in

Close lid of laptop

Sound device wants more input

6



Interrupt Handling

• What happens when an interrupt comes in?

• Jumps to an “interrupt handler” that takes over

• Problem: how do we get back to our original code?

• Problem: can the handler use registers? Could it just

save them on the stack? (does the stack pointer have

to be valid or have room on it?)

• Cortex M does this differently from other ARM

processors which always throws me because I am used

to doing this on Raspberry Pis

7



Interrupt Vectors

• Cortex-M has a set of vectors at bottom of memory (you

can move it around with VTOR register)

• Address 0 is the value that gets put in the stack pointer

at boot

• Address 4 through first 1k) are interrupt vectors

• A vector table is an array of addresses. Each interrupt

source has a unique number (on Cortex M, for complex

reasons, it is -15 to 240)

• Add 15 to source, then multiply by 4 (Remember, 32-

8



bits) then offset from 4 (to skip stack). Grab that value,

and that’s the address to jump to at an interrupt

• Look up the values

◦ -15 to -1 are internal processor interrupts, 0 to 240 are

external

◦ -15 is Reset, (at address 4) which is called at boot or

press black button

◦ -1 is SystemTick (For lab)

◦ Various hardware are the upper ones

9



Interrupt Stacking/Unstacking

• Before jumping, it saves R0,R1,R2,R3 and

R12,LR,PSR,PC to the stack.

• Which stack?

There are actually *two* stack pointers, the MSP (main

stack pointer) and PSP (process stack pointer)

I think for this class we can assume it’s always going to

the MSP

• This could be worse, non cortex-M ARM processors have

like 7 different modes each with it’s own set of banked

10



registers

• At end, restores these all. Also clears the I flag

• Return by BX LR, the processor knows to do extra stuff

if you are in interrupt handler mode

Deep down it’s actually putting a special magic value

like 0xf00000XX in LR and returning to that, but that’s

not important for this class

11



Interrupt Handler

• On Cortex-M can just be a plain C function (this isn’t

always true, other architectures require some assembly)

12



Nested Vectored Interrupt Controller
(NVIC)

• 256 interrupts

• Each has 6 bits (spread across different regs)

◦ Enable (ISER0..ISER7)

◦ Disable

◦ Pending

◦ Un-pending

◦ Active

◦ SW trigger

13



Interrupt Priority

• Can interrupt an interrupt. Why?

• Real time systems

• Non-maskable interrupt?

14



Enabling an Interrupt

• Setup handler

• Make sure vector points to it

• Enable the interrupt for the device you want in ISER

• Globally enable interrupts for the processor

15



Handling an Interrupt

• Handler called.

• Save regs? Not on Cortex-M, does it for you

• Figure out what interrupt happened (Cortex-M a vector

for each so not a problem?)

• “ACK” the interrupt, tell the hardware we are handling

it

• Do whatever we want. Should this take a while?

• Exit interrupt and return to where we were. Cortex-M

will clear interrupt flag and restore regs from special

16



stack for is

17



Lab#7 Preview

• Setup a timer that operates at 1ms (1000Hz)

• Setup an interrupt handler that runs at 1000Hz, that

decrements a value you set down to zero.

• Create a delay function that uses this timer to do “exact”

timing.

Set the value to 1000, then spin waiting for it to be zero.

• Use it to blink LED exactly

• Measure this with oscilloscope (know how to, taking

214?)

18



Apple II Timer/Interrupt Demo

Thwarted by a loose audio cable.

19


