
ECE 271 – Microcomputer
Architecture and Applications

Lecture 17

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

28 March 2019

http://web.eece.maine.edu/~vweaver


Announcements

• Read Chapter 15

• Note github, ssh keys changed, the whole VM

accidentally erased

1



WFI/WFE instructions

• Wait for interrupt or event

• CPU goes into a low-power mode (sleep) waiting for an

interrupt

• Can save power when nothing else is going on

• Use SEV to send event to wake from WFE (used on Pi

to start secondary processors)

2



System Timer

• What are times useful for?

• Exact timing

• If you have an OS, a regular timer tick to keep track of

time, also context-switch

• Things that run in background. i.e. heartbeat LED,

how can you have that run in background? Hook up to

timer-tick interrupt

3



System Timer

• ARM Cortex-M standardizes on an interface

• Note, it is part of the ARM processor so not documented

in the STM32L4 SoC documentation (rather in the

“Cortex-M4 Generic Users Guide”)

• Four registers

◦ SysTick CTRL (control and status)

◦ SysTick LOAD (reload value)

◦ SysTick VAL (current value)

◦ SysTick CALIB (calibration)

4



SysTick Control/Status Register

• SysTick CTRL

◦ Bit 0 – ENABLE – enable

◦ Bit 1 – TICKINT – enable interrupts when hit zero

◦ Bit 2 – CLKSOURCE – 0 = external clock (AHB/8)

or 1 (Processor clock)

◦ Bit 16 – COUNTFLAG = special event happened

• SysTick LOAD

◦ Bits 23-0 = RELOAD value.

After counter counts down to zero, reloads

5



SysTick LOAD

To interrupt every N cycles, set to N-1. 24-bit so up

to roughly 16M

• SystTick VAL

◦ Reading gets current value. Writing any value to it

resets to 0 (Setting to LOAD on next tick)

• SystTick CALIB

◦ Has the value needed to load to get a certain frequency.

STM doc says this is 0x4000270F which gives 1ms

when running the clock at 80MHz/8. This is different

than what the textbook says.

6



Setting to get the time

• SysT ickPeriod = (1+SysT ick Load× 1
SysT ickClockFreq

• So if LOAD is 6 and clock is 1MHz, 7us

7



Clocks on the STM32L4Discovery

• HSI16 – high speed internal – 16MHz clock

• MSI – multi-speed internal RC clock – 100kHz to 48MHz

Note these are RC and best effort and “approximate”

• HSE – high speed external, 4-48MHz

• PLL – phase locked loop, complicated, but in our case

essentially a clock multiplier. That’s how the board can

get up to 80MHz

• Why run at lower speeds? CMOS power equation, power

usage is linear with frequency (and square of voltage)

8



Writing the interrupt handler

• Looks like regular C function

• Our code, just decrements a global variable each time it

is called, stopping at zero.

• We call it SysTick Handler()

• How does its address get in the right slot? (address

0x58)

• Linux, we put its address there in an array that gets put

in to the right place by the linker script.

• Keil does another trick, there’s an existing

9



SysTick Handler() declared as a WEAK symbol. That

means it’s lesser priority, so if we define a function with

the same name the linker will replace the other one with

ours.

10



Writing the delay function

• Just loads a value into the global variable that’s being

decremented by the handler.

• Is this safe? Maybe. What if the write is halfway

done and gets interrupted by the interrupt? More a

problem if you imagine a two-part value being set, like

minutes:seconds. Race condition. Locking? Disabling

interrupts?

• Then spin waiting for the value to decrement down to

zero.

11



• Does this global value need to be marked volatile?

12



Lab #8 Notes

• Pulse-Width Modulation (PWM)

• Sends stream of 0s and 1, but the average voltage is in

between which is useful sometimes

• Dimm an LED by pulsing it rapidly

• Control a servo motor by sending it proper stream of

pulses

• Can play audio via 1-bit signal

13



Setting up PWM

• Similar to SysTick timer but a bunch more register

settings

• There is a sawtooth carrier signal (draw graph) and a

threshold when it is crossed (CCR) and the value it

counts down from (ARR)

• duty cycle = pulseontime(Ton)
pulseswitchingperiod(Ts)

× 100%

= Ton
Ton+Toff

× 100%

• Three factors matter:

◦ comparison between timer counter (CNT) and the

14



reference value (CCR)

◦ the PWM output mode

◦ the polarity bit

15



Up-Counting
Switching periodAuto Reload

Value (ARR)

Compare/
Capture Value

(CCR)

PWM
Output

16



Down-Counting
Switching periodAuto Reload

Value (ARR)

Compare/
Capture Value

(CCR)

PWM
Output

17



Center-Counting
Switching periodAuto Reload

Value (ARR)

Compare/
Capture Value

(CCR)

PWM
Output

18



Timer can have multiple outputs

• With lots of other features too

19


