
ECE 271 – Microcomputer
Architecture and Applications

Lecture 20

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

9 April 2019

http://web.eece.maine.edu/~vweaver


Announcements

• Read Chapter 12

1



Floating Point / Fixed Point

• We have been working with integers, signed and

unsigned.

• How can you represent fractional numbers?

• How does it work in base 10?

1234.56 = 1× 103 + 2× 102 + 3× 101 + 4× 100 + 5×
10−1 + 6× 10−2

• You can do the same thing in binary (base2)

1010.10 = 1×23+0×22+1×21+0×20+1×2−1+0×2−2

This is 10.5 in decimal

2



• You can do this for arbitrary bases.

You have to keep track of the decimal or “radix” point

handled

3



Fixed Point

• Fix the decimal point somewhere inside the number

• In decimal, note that 123.45 + 12.51 is the same as

12345+1251, just you move the decimal point.

• So we can have fractional parts of integers by just moving

the decimal point.

4



Fixed Point – Notation

• UQm.n = Unsigned fixed point, m bits to left of point,

n bits to right

• Qm.n = Signed fixed point, m bits to left (one is sign

bit) n bits to right

5



Fixed Point – Size

• Tradeoff in m vs n values

• Accuracy – how close it is to the number you are trying

to represent

• Resolution – the smallest change that will give you

another value

6



Fixed Point – Q16.16

• Q16.16 – 16 bits of integer, 16 bits of fraction

• Use regular integer register and regular math

• Limited range, you now have smallest max value you can

have

• Also need to track the radix point yourself

• Binary example

7



• 101.111 = 5 + 0.25 + 0.125 = 5.375

8



Addition

• Easy. Make sure Q for both is the same and just add

• 0101.1 + 0101.1 = 1011.0

9



Subtraction

• Just like addition

10



Multiplication

• Think about decimal. 10.1 * 2.0 = 20.2

but how do you do it

10.1

2.0

=====

000

202

=========

2020

11



Then you shift the point left by the number to the right of the decimal point

20.2

• What you are doing is 101 × 10−1 times 20 × 10−1 so

you can do the first, then do the second

• Regular multiply

• Need to adjust radix point back

• 0010.1 * 0010.1 = 0000 0000 0000 0010 1000 0000

0000 0000

12



• 0x28000*0x28000 = x6 4000 0000 Q16.16*Q16.16 =

Q32.32

• ¿¿ 16 = 0x6 4000 = 6.25

• ARM SMULL instruction 32x32 = high/low 64-bit values

13



Division

• Similar to multiply

• 0x28000 / 0x28000 = 1 Q16.16 / Q16.16 = Q1. ¡¡ 16

What happens to fraction part?

Shift one by ¡¡ 16 first before divide to not lose all

fraction

14



Converting to int

• Just shift right by Q.

• Rounding

15



Overflow

• can be a problem

16



Why ARM is good at it

• barrel-shift instructions

17



Can you exactly represent all numbers?

• In decimal, 1/3? No

• In binary, only combinations of powers of 2. So even

things like 1/5 (0.2) you can’t represent exactly.

• Irrational numbers like Pi?

18



Arbitrary Precision Number Libraries

• If you need *exact* values

• Tend to be slow and use lots of RAM, but give exact

results

19



Fixed Point Limited Range

• What if you want to operate on numbers with different

Q values

• What if you want to add very large or very small numbers

20


