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Announcements

• Read Chapter 12
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Floating Point / Fixed Point

• We have been working with integers, signed and

unsigned.

• How can you represent fractional numbers?

• How does it work in base 10?

1234.56 = 1× 103 + 2× 102 + 3× 101 + 4× 100 + 5×
10−1 + 6× 10−2

• You can do the same thing in binary (base2)

1010.10 = 1×23+0×22+1×21+0×20+1×2−1+0×2−2

This is 10.5 in decimal
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• You can do this for arbitrary bases.

You have to keep track of the decimal or “radix” point

handled
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Fixed Point

• Fix the decimal point somewhere inside the number

• In decimal, note that 123.45 + 12.51 is the same as

12345+1251, just you move the decimal point.

• So we can have fractional parts of integers by just moving

the decimal point.
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Fixed Point – Notation

• UQm.n = Unsigned fixed point, m bits to left of point,

n bits to right

• Qm.n = Signed fixed point, m bits to left (one is sign

bit) n bits to right
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Fixed Point – Size

• Tradeoff in m vs n values

• Accuracy – how close it is to the number you are trying

to represent

• Resolution – the smallest change that will give you

another value
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Fixed Point – Q16.16

• Q16.16 – 16 bits of integer, 16 bits of fraction

• Use regular integer register and regular math

• Limited range, you now have smallest max value you can

have

• Also need to track the radix point yourself

• Binary example
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• 101.111 = 5 + 0.25 + 0.125 = 5.375
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Addition

• Easy. Make sure Q for both is the same and just add

• 0101.1 + 0101.1 = 1011.0
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Subtraction

• Just like addition
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Multiplication

• Think about decimal. 10.1 * 2.0 = 20.2

but how do you do it

10.1

2.0

=====

000

202

=========

2020
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Then you shift the point left by the number to the right of the decimal point

20.2

• What you are doing is 101 × 10−1 times 20 × 10−1 so

you can do the first, then do the second

• Regular multiply

• Need to adjust radix point back

• 0010.1 * 0010.1 = 0000 0000 0000 0010 1000 0000

0000 0000
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• 0x28000*0x28000 = x6 4000 0000 Q16.16*Q16.16 =

Q32.32

• ¿¿ 16 = 0x6 4000 = 6.25

• ARM SMULL instruction 32x32 = high/low 64-bit values
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Division

• Similar to multiply

• 0x28000 / 0x28000 = 1 Q16.16 / Q16.16 = Q1. ¡¡ 16

What happens to fraction part?

Shift one by ¡¡ 16 first before divide to not lose all

fraction
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Converting to int

• Just shift right by Q.

• Rounding
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Overflow

• can be a problem
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Why ARM is good at it

• barrel-shift instructions
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Can you exactly represent all numbers?

• In decimal, 1/3? No

• In binary, only combinations of powers of 2. So even

things like 1/5 (0.2) you can’t represent exactly.

• Irrational numbers like Pi?
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Arbitrary Precision Number Libraries

• If you need *exact* values

• Tend to be slow and use lots of RAM, but give exact

results
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Fixed Point Limited Range

• What if you want to operate on numbers with different

Q values

• What if you want to add very large or very small numbers

20


