
ECE 271 – Microcomputer
Architecture and Applications

Lecture 21

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

9 April 2019

http://web.eece.maine.edu/~vweaver

Announcements

• Read Chapter 12

1

IEEE 754 Floating Point

• Standard from 1985

2

Floating Point Layout

• (−1)sign(1.fraction)× 2exponent−bias

• exponent=0 means zero (or subnormal). What is all 0

value?

• exponent=bias NaN, +/- infinity

3

Floating Point Sizes

• Half precision (16 bit)

Sign=1, Exponent=5, fraction=10

• Single precision (32 bit) (float in C)

Sign=1, Exponent=8, Fraction=23

• Double precision (64 bit) (double in C)

Sign=1, Exponent=11, Fraction=52

• Intel x86 (80 bits)

• Why have smaller sizes? They take up less room and

are faster.

4

Floating Point Conversion Examples

• You have the value 0xc1ff0000. If it’s a 32-bit floating

point value, what is the decimal equivalent?

• 1100 0001 1111 1111 0000 0000 0000 0000

• Sign bit is 1 (negative)

• Exponent is 8 bits, 1000 0011 which is 131

• Fraction is 1111 1110 0000 0000 0000 000

so 0.1111 111 1/2 + 1/4 + 1/8 +1/16 + 1/32 + 1/64

+ 1/128 = 0.9921875

• f = (−1)S × (1 + fraction)× 2exponent−127

5

• f = (−1)−1 × (1 + 0.9921875)× 2131−127

• f = −1× 1.9921875× 24

• f = −31.875

6

Convert FP to binary

• You want to convert the value 6.022× 1023

• Sign bit is 0 (positive)

• 6.022 in binary is:

110 (six)

.022 .5? 0

.25 0

.125 0

.0625 0

.03125 0

7

.015625 1 R .006375

.0078125 0

.00390625 1 R .00246875

.001953125 1 R .00515625

• So 110.000001011. . .

• Wait, 10**23? What’s *that* in base 2? ln (6.022E23)

/ ln(2) = 78.994589

subtract 78, then 2.994589 = 1.9925128

So it equals 1.9925128 ∗ 278
1.

.5? 1 R 0.4925128

8

.25? 1 R 0.245128

.125? 1 R 0.1175128

.0625? 1 R 0.0550128

.03125? 1 R 0.0237628

.015625? 1 R 0.0081378

.0078125? 1 R 0.0003253

.00390625? 0 R 0.0003253

.001953125? 0 So 1.11111110

• In 32-bit floating point

◦ f = (−1)−1 × (1 + 111111100)× 278

9

X-127 = 78, X = 205 = 1100 1101

0 110,0 110,1 111,1111,0 000,0000,0 000,0000

0x66ff0000

• In 64-bit floating point 1/11/52

X-1023=78, X=1101 = 10001001101

0 100,0100,1101, 1111 1110 0000 0000 0000 0000 0000

0000 0000 ...

0x44dfe000 00000000

10

Floating Point Conversion Examples

int main(int argc , char **argv) {

float f;

unsigned int x;

x=0 x66ff0000;

memcpy (&f,&x,sizeof(float));

printf("%x is %g\n",x,f);

f=6.022 e23;

memcpy (&x,&f,sizeof(float));

printf("%x is %g\n",x,f);

return 0;

}

66 ff0000 is 6.02102e+23

66 ff0aa8 is 6.022e+23

44 dfe00000000000 is 6.02102e+23

44 dfe154f457ea13 is 6.022e+23

11

Special Values

• Zero ... cannot represent in standard form (why?

because it has to be 1.x in the mantissa). Special

value, all zeros. Positive and Negative zeros.

• Positive and negative infinity: all exponent bits are 1s,

mantissa all zeros

• NaN (not a number).

Exponent all 1s, mantissa non-zero

Things like 0/0, sqrt(-1), log(-1). Two types: QNaN

(quiet) which does not cause an exception, and SNaN

12

(signaling) that cause an exception that needs o be

handled.

13

Overflow and Underflow

• What’s the smallest number you can represent? Smallest

exponent 0b00000001, fraction 0000, so

(−1)S × (1 + 0)× 21−127 = ±1.18× 10−38

• What’s the largest number?

Maximum exponent 0b11111110 and mantissa all 1s

(−1)S × (1 + 1− 2−23)× 2254−127 = ±3.40× 1038

• What is underflow? Too small but not zero?

• Overflow, too large to be represented

14

Subnormal Numbers

• Numbers between smallest and zero

• If exponent is 0, treat leading digit in mantissa as 0

instead of 1

• Can get down to 1.45× 10−45

15

Tradeoff between range and resolution

•

16

Floating Point Comparison

• float f = (5.0 - 1.0/7.0) + (1.0/7.0);

• if (f==5.0) printf("Five exactly.\n")

• May work may not. Best way is to have some error

(epsilon) and compare if absolute value less than a

number.

17

Floating Point Rounding Rules

• Complex mess, can cause interesting issues

• Especially as in floating point there are extra bits usually

kept around for accuracy, but they are rounded off when

written out to memory and you have to fit exactly in 32

or 64 bits

• IEEE-754

◦ Round to nearest

What do we do if *exactly* in between?

round to even

18

◦ Round toward zero (truncate)

◦ Round to +inf (round up)

◦ Round toward -inf (round down)

19

Floating Point Addition

• Shift smaller fraction to match larger one

• add or subtract based on sign bits

• normalize the sum

• round to appropriate bits

• detect overflow and underflow

• do example

20

Floating Point Multiplication

• Identify the sign

• add the exponents

• multiply the fractions (including leading hidden one)

• normalize the results

21

Transcendentals?

• cordic?

22

Quake Square Root Trick

23

Floating Point Drawbacks

• special hardware

• power hungry, if not commonly used

• chip area, expense

• back in day, special chip

• rounding issues

• money calcs. 1/10 only approximate. .0001100110011

24

• trouble near zero

25

