ECE271: Microcomputer Architecture and Applications — University of Maine

Prelab for Lab #1: Button Input and LED Output
Week of 28 January 2019

Pre-lab

This assumes you will be doing the lab using Keil on Windows (the default). If you are feeling adventure-
some and want to develop under Linux instead, see the directions in Part A.2. You should probably install
the Keil tools anyway just to have it in case you change your mind later.

Part A - Setting up Keil on Windows

Caution: do not connect the STM32L4 board to your laptop until you have all the software installed. If you
connect before it is installed it can confuse the Windows USB drivers and you may have to manually go in
to devices under the control panel and force it to use the right driver.

1. Download the latest “free” evaluation version of Keil MDK-ARM software from their website. Un-
fortunately you’ll have to enter your contact info before they let you download it.
https://www.keil.com/demo/eval/arm.htm
Note, this is a fairly large download (almost 1GB)

This includes the pVisision IDE, debugger, flash programmer, and ARM toolchain.
This is a proprietary product and has some limitations (such as a limit on size of the project) but it is
unlikely we will hit those limits with this class.

2. Run the downloaded MDK5xx . exe and install to the default path.

Setup MDK-ARM V5.12 =5
Folder Selection D KE I E
Select the folder where SETUP will install files. : Tools b}-‘ ARM
Press Mest' to install MDK-ARM to these folders. Press ‘Browse' to select different folders for installation.
Destination Folders
Care: |E:\Keil_v5 Browse ..
Pack: [C:Keil_vS\ARM\PACK, Browse ...

<< Back | Mest > | Cancel

3. After the software installed, a dialog will pop up to install the Keil Pack.

4. Click OK and then another window shows up.

https://www.keil.com/demo/eval/arm.htm

Pack Installer @

Welcome to the Keil Pack Installer

Pack Installer is a utility for managing Software Packs on the local computer and
provides the following windows:

Packs : Listand manage Software Packs. Install a Pack for access within pVision,
Example : List example projects. Copy projects and launch pVision for testing examples.
Devices : List supported devices, Select a device to show related Packs and examples.

Boards : Listsupported boards. Select a board to show related Packs and examples.

Pack Installer connects to www keil.com/pack to obtain the published Software Packs.
To install & local Software Pack use File - Import... from the menu.

v Show this dizlog at startup oK | Help |

5. We’ll be using the STM32L4 discovery kit, which has a STM32L.476VG MCU in it. So select
the STM32L.476VG and then STM32L.476VGTX, then click the corresponding “install” button by
STM32L4xx_DFP on the right half of the window.

ﬂ Devices Boards ﬂ ﬂ Packs Examples ﬂ
Search: - X Pack Action Description
Deviee /| Summary g =-Device Specific 1Pack

7% STM32L4TS 12 Devices j +--Keil:5TM32 L4 DFP 2 Up to date | STMicroelectronics STM32L4 Series Device Support, Drivers and Examples

=4 sTM32L476 14 Devices pr| =-Generic 12 Packs
w1 %% STM32LATEIE 1 Device +--ARM: CMSIS 2 Up to date || CMSIS (Cortex Microcontroller Software Interface Standard)
%% STM32L4TEIG 1 Device +- ARM: CMSIS-Driver_Va... g% Install CMSIS-Driver Validation
% STM32L476ME 1 Device +--Keil:ARM_Compiler ! Up to date || Keil ARM Compiler extensions
%% STM32L476MG 1 Device +-Keil::Jansson @ Install Jansson is a C library for encoding, decoding and manipulating JSON data
w48 STM32L4760E 1 Device +-Keil:MDK-Middleware Up to date | Keil MDK-ARM Professional Middleware for ARM Cortex-M based devices
w9 STMI2L47606 1 Device +- Keil:MDK-MNetwork_DS Install Keil MDK-ARM Professional Middleware Dual-5Stack IPvd/IPvE Metwork for A
w4 STM32L4T6RC 1 Device +--lwlPlwlP g% Install IwlP is a light-weight implementation of the TCP/IP protocol suite
w8 STM32L476RE 1 Device +-Micrium:RTOS € Install Micrium software components
5% STM32L4T6RG 1 Device +-Oryx-Embedded:Midd... <_> Install Middleware Package (CycloneTCP, CycloneS5L and CycloneCrypta)
w8 STMI2LATEVE 1 Device +--wolfS5L:CyaSsL g% Install Light weight S5L/TLS and Crypt Library for Embedded Systems
w4 STM32L4TEVE 1 Device +-YOGITECH:fRSTL_AR... g% Install YOGITECH fRSTL Functional Safety EVAL Software Pack for ARM Cortex-M F
o %% STMIZLATEVG 1 Device +-YOGITECH:fRSTL_ST... @ Install YOGITECH fRSTL Functional Safety EVAL Software Pack for STM32Fx Microc

& ARM Cortex-M4, 80 MHz, 128 k...

+-“1§ STM32L4T6ZE 1 Device
-1 STM32L4T6ZG 1 Device -

+-¥1§ STM32L485 1 Device

botiilmras b -1 |« sl

6. Once that is done, close the window.
7. Now install the ST-Linux USB driver

8. Go to the directory C: \Keil_v5\ARM\STLink\USBDriver and run the
stlink_winusb_install.bat script in administrator mode (you can do this by right clicking
on the batch file)

9. Once this is done, it should be safe to connect your discovery board via USB (we’ll be handing them
out in lab).

10. OPTIONAL STEP: you can also install the STM32 ST-Link utility from ST. This is not strictly needed,
but this can be a useful program that can re-flash the memory if somehow a bad program gets uploaded

to the board and the Keil tools are unable to do anything about it.
http://www.st.com/web/en/catalog/tools/PF258168

Part A.2 — Setting up Linux (optional)

Only do this if you want to develop your lab under Linux. Skip this section if you are using Windows (which
is probably most people).

These instructions assume you are running Debian Linux. The steps should be similar for other Linux
distributions. If you are running non-Debian and have trouble, let me know and I can help set things up.

1.

You will need to install the ARM cross-compiler tools, the openocd flash upload utility, and maybe
st-link for the first program.

sudo apt—-get install openocd

sudo apt-get install gcc—arm-none-eabi
sudo apt-get install gdb-arm-none-eabi
sudo apt-get install stlink-gui

On Fedora if you get an error about stdint.h being missing you should try installing the arm-none-eabi-newl
package as well.

Also, it might be helpful if you have other development tools installed on your machine.

sudo apt-get install gcc make git

. You will want to find a text editor to use for development. (Alternatively you can set up a full IDE, but

that’s more complex). nano is a nice, simple editor. Other popular command-line editors are vim or
emacs. There are also GUI editors you can install.

Part B — Setup Gitlab

1.

We will probably be using git source-control to work on and submit the assignments. See the course
website for how to set this up.

Part C - Textbook Readings / Videos
The following might be helpful in preparing for the prelab.

1.
2.

Textbook Chapter 4.6 toreview bit-wise operations

Textbook Chapter 14 toreview GPIO operations

. The classnotes are also posted to the course website.

The textbook has some related Youtube Tutorials here:
http://web.eece.maine.edu/~zhu/book/tutorials.php

Lectures 5, 6, and 7 there might be useful. I have to admit I haven’t watched them myself so I can’t
vouch for how useful they are.

http://www.st.com/web/en/catalog/tools/PF258168
http://web.eece.maine.edu/~zhu/book/tutorials.php

Part D — Prelab assignment

Before doing the lab it will be helpful to calculate what values or masks you need to write to the various
registers. So go through the following and fill in the values you will need.

1. Initialize the GPIO Clocks

Before you can use the GPIO (general-purpose input/output) pins you have to enable the clock to them. By
default the clock is turned off, as this saves power.

For the STM32L4 board, the GPIO clock enable pins can be found in the AHB2ENR register. You can
read the official documentation for this register in section 6.4.17 of the manual “RM0351 Reference manual:
STM32L4x5 and STM32L.4x6 advanced Arm-based 32-bit MCUs” which I've posted a link to on the course
website.

Register [|31(30(29(28|27|26(25|24(23(22|21|20|19|18[17|16|/15][14|13]12(11|10{9|8|7|6|5|4|3|2|1|0
Z Z|ZIZZz|z|Z|Z|z |z

Z P 5 SRS

AHB2ENR L§ E % 558388885
o.‘r—1»—1*—4b—1»—1»—1»—1»—4

%] | 5 giFEEIEEIERE

[Vawe || [[[[T T IO TTTTT T IO TTTTTITHTITITITTITT]

Value in hex:

We want to enable the two LEDs, which are hooked to GPIO-PB2 and GPIO-PE8. GPIO-PB?2 is the second
GPIO in bank “B”, and GPIO-PES is the eighth GPIO in bank “E”. This info can be found in section 10.5 of
the STM32L4 datasheet: “UM1879 User manual Discovery kit with STM32L.476VG MCU” that I've also
linked to on the course website. We also want to enable the joystick buttons, which are found on GPIO-PAO
through GPIO-PAS.

This means we need to set GPIOAEN (GPIO-A enable), GPIOBEN (GPIO-B enable) and GPIOEEN (GPIO-
E enable) all to 1 while leaving all the other bits alone.

Fill in the “Value” table the bits we want to set in binary, and then convert it to hexadecimal (base 16).

2. Initialize the LED GPIOs to be Outputs

Next we will need to enable PB-2 as an output. This is done in the GPIOB MODER register, which can
be found described in section 8.4.1 of the manual. This register has 16 fields, each two bits wide. To set to
output, the corresponding field must be set to 01 for MODER #2. To do this you will first need to clear the
two bits to zero, then or in the value. So calculate the mask below, then the value to OR in, first in binary
then in hex.

Register [[31[30][29]28][27][26][25]24[[[23[22][21[20][19] 18] 17 16[[15[14][13[12] 11]10][9[8[[7]6]5]4][3[2[[1[0
(Mask | [[[[[I [M L0 T T T LTI LT T LRI T]]
[Vvawe | [[[I T DI T M T OB THTTITTINITETTLRIIMNITITITT]
Mask in hex: Value in hex:

You will need to do the same for PE8. GPIO-E also has its own MODER register (we’ll worry about which
register is where in the actual lab, for now just calculate the value for GPIO#8).

Register [[31[30][29]28][27][26][25[24][[23][22[21]20][19] 18] 17] 16[[15| 14[[13[12] 1] 10][9[8[[7]6]5]4][3]2[[1[0
[Mask | [[T [T 0 LW T O T LT L LM T T T PTMLILEITNT]
[Vawe [[[T [T 0T T O T LT PO TT T T IO TNT]
Mask in hex: Value in hex:

3. Initialize LED GPIOS to be Push-Pull

We want the output to be push-pull (instead of open-drain). This is set in the OTYPER register, as described
in section 8.4.2 of the manual. Push-pull is 0, open-drain is 1, so we want to set PB2 (so OT?2) to zero.

Register ||31(30|29(28(27(26|25(24(/23|22|21(20|19|18|17|16|15|14[13|12|11|10{9|8||7|6|5]|4|3|2|1|0
OTYPER = 551551588158 5555 55
[Mask [[[[[[[[I [[T T T T[T [T TTITIHITITIIT]T]]
(Vawe [[[[[[[[QO [T T T T T IO LTI TTTIIRTIITIIITT]
Mask in hex: Value in hex:

Also calculate the same for the offset #8 for PES.

Register [|31|30(29(28|27(26|25(24((23|22(21|20|19|18|17|16([15|14|13|12|11]10(9(8|7|6|5|4(3(2|1|0
OTYPER 55|55 5555558585588
[Mask | [[| [[[[I [[[[[T [[T T[T ITTNITIT[]]]
(Vawe | [[[[[T O [T T T TT IO ITTTITTITIRITITIITT]
Mask in hex: Value in hex:

4. Initialize the LED GPIOs for No PullUp/PullDown

We will also need to set the Pull-Up / Pull-Down registers. This is done with the PUPDR register as described
in section 8.4.4 of the manual. There are two-bit fields. For GPIO PB2 we want to set this to 00 which means
no pull-up, no pull-down.

0oddadnd

r4adnd

cddadnd

£dddnd

ydddnd

gdadnd

9dddnd

Ld4ddnd

8dddNd

6dddNd

01dddNd|

114ddnd

c1d4ddnd

crdddnd

Y1dddNd|

craddnd

Register [31]30[[29]28[[27[26][25[24[[23]22] 21 [20] 19 18] 17[16][15[14][13[12 11[10]O[8[[7[6[[5[4[3[2][1[0

PUPDR

0dadnd

r4adnd

aqdadnd

¢ddadnd

yaddnd

cqadnd

9dddnd

L4dadnd

8dddNd

6dddNd

01dddNd|

114ddNd,

Value in hex:

c1dddnd

1 dddNd,

y1dddNd

c1raddnd

Register [31]30[[29]28[[27]26][25[24[[23]22[[21[20] 1918 17[16][15[14][13[12 11[10] 9[8[7[6[[5[4[3]2][1[0

Now calculate the same for setting PES to 00.

Mask in hex:

0dddON

[I4AdON

CIHAON

cdddON

YIHAONW

CIHAON

9dddON

LIFAON

8YHAON

6dddON

0TIHAON

[TIHAON

Value in hex:

CTIHAON

c [JHAON,

7 TIHAON

CTIHAON,

Next we will need to enable PAO, PA1, PA2, PA3, and PAS to be Inputs. This is done in the GPIOA MODER

register, which can be found described in section 8.4.1 of the manual. We want to set the corresponding
Register [[31]30][29]28][27]26[[25]24][[[23]22[[21]20[[19] 18]/ 17]16][15][14[13[12][11[10][9[8][7[6[|5]4]3]2][1]0

PUPDR

5. Initialize the Joystick GPIOs to be Inputs

MODER fields to 00 which means input.

Mask in hex:

oddadnd

r4adnd

cddadnd

£dddnd

ydaddnd

gaadnd

9dddnd

Ld4ddnd

8dddNd

6dddNd

01dddNd|

11dddnd

Value in hex:

c1d4ddnd|

crdddnd

y1dddNd|

craddnd

We will also need to set the Pull-Down register. Again, this is done with the PUPDR register as described in
section 8.4.4 of the manual. There are two-bit fields. We want to set PAO, PA1, PA2, PA3, and PAS to have

MODER

Register [31]30[[29]28[[27[26][25[24[[23]22][21[20] 19 18] 17[16][15[14][13 [12 11[10]O[8[[7[6[[5[4[3[2][1[0

6. Initialize the Joystick GPIOs to PullDown
the pulldown enabled, with is 1 0.

Mask in hex:

PUPDR

Value in hex:

Mask in hex:

