
ECE271: Microcomputer Architecture and Applications — University of Maine

Prelab for Lab #1: Button Input and LED Output
Week of 28 January 2019

Pre-lab
This assumes you will be doing the lab using Keil on Windows (the default). If you are feeling adventure-
some and want to develop under Linux instead, see the directions in Part A.2. You should probably install
the Keil tools anyway just to have it in case you change your mind later.

Part A – Setting up Keil on Windows
Caution: do not connect the STM32L4 board to your laptop until you have all the software installed. If you
connect before it is installed it can confuse the Windows USB drivers and you may have to manually go in
to devices under the control panel and force it to use the right driver.

1. Download the latest “free” evaluation version of Keil MDK-ARM software from their website. Un-
fortunately you’ll have to enter your contact info before they let you download it.
https://www.keil.com/demo/eval/arm.htm
Note, this is a fairly large download (almost 1GB)
This includes the µVisision IDE, debugger, flash programmer, and ARM toolchain.
This is a proprietary product and has some limitations (such as a limit on size of the project) but it is
unlikely we will hit those limits with this class.

2. Run the downloaded MDK5xx.exe and install to the default path.

3. After the software installed, a dialog will pop up to install the Keil Pack.

4. Click OK and then another window shows up.

https://www.keil.com/demo/eval/arm.htm


5. We’ll be using the STM32L4 discovery kit, which has a STM32L476VG MCU in it. So select
the STM32L476VG and then STM32L476VGTx, then click the corresponding “install” button by
STM32L4xx_DFP on the right half of the window.

6. Once that is done, close the window.

7. Now install the ST-Linux USB driver

8. Go to the directory C:\Keil_v5\ARM\STLink\USBDriver and run the
stlink_winusb_install.bat script in administrator mode (you can do this by right clicking
on the batch file)

9. Once this is done, it should be safe to connect your discovery board via USB (we’ll be handing them
out in lab).

10. OPTIONAL STEP: you can also install the STM32 ST-Link utility from ST. This is not strictly needed,
but this can be a useful program that can re-flash the memory if somehow a bad program gets uploaded

2



to the board and the Keil tools are unable to do anything about it.
http://www.st.com/web/en/catalog/tools/PF258168

Part A.2 – Setting up Linux (optional)
Only do this if you want to develop your lab under Linux. Skip this section if you are using Windows (which
is probably most people).

These instructions assume you are running Debian Linux. The steps should be similar for other Linux
distributions. If you are running non-Debian and have trouble, let me know and I can help set things up.

1. You will need to install the ARM cross-compiler tools, the openocd flash upload utility, and maybe
st-link for the first program.

sudo apt-get install openocd
sudo apt-get install gcc-arm-none-eabi
sudo apt-get install gdb-arm-none-eabi
sudo apt-get install stlink-gui

On Fedora if you get an error about stdint.h being missing you should try installing the arm-none-eabi-newlib
package as well.

2. Also, it might be helpful if you have other development tools installed on your machine.

sudo apt-get install gcc make git

3. You will want to find a text editor to use for development. (Alternatively you can set up a full IDE, but
that’s more complex). nano is a nice, simple editor. Other popular command-line editors are vim or
emacs. There are also GUI editors you can install.

Part B – Setup Gitlab
1. We will probably be using git source-control to work on and submit the assignments. See the course

website for how to set this up.

Part C – Textbook Readings / Videos
The following might be helpful in preparing for the prelab.

1. Textbook Chapter 4.6 to review bit-wise operations

2. Textbook Chapter 14 to review GPIO operations

3. The classnotes are also posted to the course website.

4. The textbook has some related Youtube Tutorials here:
http://web.eece.maine.edu/~zhu/book/tutorials.php
Lectures 5, 6, and 7 there might be useful. I have to admit I haven’t watched them myself so I can’t
vouch for how useful they are.

3

http://www.st.com/web/en/catalog/tools/PF258168
http://web.eece.maine.edu/~zhu/book/tutorials.php


Part D – Prelab assignment
Before doing the lab it will be helpful to calculate what values or masks you need to write to the various
registers. So go through the following and fill in the values you will need.

1. Initialize the GPIO Clocks

Before you can use the GPIO (general-purpose input/output) pins you have to enable the clock to them. By
default the clock is turned off, as this saves power.

For the STM32L4 board, the GPIO clock enable pins can be found in the AHB2ENR register. You can
read the official documentation for this register in section 6.4.17 of the manual “RM0351 Reference manual:
STM32L4x5 and STM32L4x6 advanced Arm-based 32-bit MCUs” which I’ve posted a link to on the course
website.

Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AHB2ENR
R

N
G

E
N

A
E

SE
N

O
T

G
FS

E
N

G
PI

O
IE

N
G

PI
O

H
E

N
G

PI
O

G
E

N
G

PI
O

FE
N

G
PI

O
E

E
N

G
PI

O
D

E
N

G
PI

O
C

E
N

G
PI

O
B

E
N

G
PI

O
A

E
N

Value

Value in hex:________

We want to enable the two LEDs, which are hooked to GPIO-PB2 and GPIO-PE8. GPIO-PB2 is the second
GPIO in bank “B”, and GPIO-PE8 is the eighth GPIO in bank “E”. This info can be found in section 10.5 of
the STM32L4 datasheet: “UM1879 User manual Discovery kit with STM32L476VG MCU” that I’ve also
linked to on the course website. We also want to enable the joystick buttons, which are found on GPIO-PA0
through GPIO-PA5.

This means we need to set GPIOAEN (GPIO-A enable), GPIOBEN (GPIO-B enable) and GPIOEEN (GPIO-
E enable) all to 1 while leaving all the other bits alone.

Fill in the “Value” table the bits we want to set in binary, and then convert it to hexadecimal (base 16).

2. Initialize the LED GPIOs to be Outputs

Next we will need to enable PB-2 as an output. This is done in the GPIOB MODER register, which can
be found described in section 8.4.1 of the manual. This register has 16 fields, each two bits wide. To set to
output, the corresponding field must be set to 01 for MODER #2. To do this you will first need to clear the
two bits to zero, then or in the value. So calculate the mask below, then the value to OR in, first in binary
then in hex.

4



Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MODER
M

O
D

E
R

15

M
O

D
E

R
14

M
O

D
E

R
13

M
O

D
E

R
12

M
O

D
E

R
11

M
O

D
E

R
10

M
O

D
E

R
9

M
O

D
E

R
8

M
O

D
E

R
7

M
O

D
E

R
6

M
O

D
E

R
5

M
O

D
E

R
4

M
O

D
E

R
3

M
O

D
E

R
2

M
O

D
E

R
1

M
O

D
E

R
0

Mask
Value

Mask in hex:________ Value in hex:________

You will need to do the same for PE8. GPIO-E also has its own MODER register (we’ll worry about which
register is where in the actual lab, for now just calculate the value for GPIO#8).

Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MODER

M
O

D
E

R
15

M
O

D
E

R
14

M
O

D
E

R
13

M
O

D
E

R
12

M
O

D
E

R
11

M
O

D
E

R
10

M
O

D
E

R
9

M
O

D
E

R
8

M
O

D
E

R
7

M
O

D
E

R
6

M
O

D
E

R
5

M
O

D
E

R
4

M
O

D
E

R
3

M
O

D
E

R
2

M
O

D
E

R
1

M
O

D
E

R
0

Mask
Value

Mask in hex:________ Value in hex:________

3. Initialize LED GPIOS to be Push-Pull

We want the output to be push-pull (instead of open-drain). This is set in the OTYPER register, as described
in section 8.4.2 of the manual. Push-pull is 0, open-drain is 1, so we want to set PB2 (so OT2) to zero.

Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OTYPER

O
T

15
O

T
14

O
T

13
O

T
12

O
T

11
O

T
10

O
T

9
O

T
8

O
T

7
O

T
6

O
T

5
O

T
4

O
T

3
O

T
2

O
T

1
O

T
0

Mask
Value

Mask in hex:________ Value in hex:________

Also calculate the same for the offset #8 for PE8.

Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OTYPER

O
T

15
O

T
14

O
T

13
O

T
12

O
T

11
O

T
10

O
T

9
O

T
8

O
T

7
O

T
6

O
T

5
O

T
4

O
T

3
O

T
2

O
T

1
O

T
0

Mask
Value

Mask in hex:________ Value in hex:________

4. Initialize the LED GPIOs for No PullUp/PullDown

We will also need to set the Pull-Up / Pull-Down registers. This is done with the PUPDR register as described
in section 8.4.4 of the manual. There are two-bit fields. For GPIO PB2 we want to set this to 00 which means
no pull-up, no pull-down.

5



Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PUPDR
PU

PD
R

15

PU
PD

R
14

PU
PD

R
13

PU
PD

R
12

PU
PD

R
11

PU
PD

R
10

PU
PD

R
9

PU
PD

R
8

PU
PD

R
7

PU
PD

R
6

PU
PD

R
5

PU
PD

R
4

PU
PD

R
3

PU
PD

R
2

PU
PD

R
1

PU
PD

R
0

Mask
Value

Mask in hex:________ Value in hex:________

Now calculate the same for setting PE8 to 00.

Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PUPDR

PU
PD

R
15

PU
PD

R
14

PU
PD

R
13

PU
PD

R
12

PU
PD

R
11

PU
PD

R
10

PU
PD

R
9

PU
PD

R
8

PU
PD

R
7

PU
PD

R
6

PU
PD

R
5

PU
PD

R
4

PU
PD

R
3

PU
PD

R
2

PU
PD

R
1

PU
PD

R
0

Mask
Value

Mask in hex:________ Value in hex:________

5. Initialize the Joystick GPIOs to be Inputs

Next we will need to enable PA0, PA1, PA2, PA3, and PA5 to be Inputs. This is done in the GPIOA MODER
register, which can be found described in section 8.4.1 of the manual. We want to set the corresponding
MODER fields to 00 which means input.

Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MODER

M
O

D
E

R
15

M
O

D
E

R
14

M
O

D
E

R
13

M
O

D
E

R
12

M
O

D
E

R
11

M
O

D
E

R
10

M
O

D
E

R
9

M
O

D
E

R
8

M
O

D
E

R
7

M
O

D
E

R
6

M
O

D
E

R
5

M
O

D
E

R
4

M
O

D
E

R
3

M
O

D
E

R
2

M
O

D
E

R
1

M
O

D
E

R
0

Mask
Value

Mask in hex:________ Value in hex:________

6. Initialize the Joystick GPIOs to PullDown

We will also need to set the Pull-Down register. Again, this is done with the PUPDR register as described in
section 8.4.4 of the manual. There are two-bit fields. We want to set PA0, PA1, PA2, PA3, and PA5 to have
the pulldown enabled, with is 10.

Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PUPDR

PU
PD

R
15

PU
PD

R
14

PU
PD

R
13

PU
PD

R
12

PU
PD

R
11

PU
PD

R
10

PU
PD

R
9

PU
PD

R
8

PU
PD

R
7

PU
PD

R
6

PU
PD

R
5

PU
PD

R
4

PU
PD

R
3

PU
PD

R
2

PU
PD

R
1

PU
PD

R
0

Mask
Value

Mask in hex:________ Value in hex:________

6


