
ECE271: Microcomputer Architecture and Applications — University of Maine

Prelab for Lab #4: GPIOs in Assembly Language
Week of 18 February 2019

Pre-lab
This lab will be re-implementing Lab#1 in Thumb-2 assembly language. As a reminder, Lab#1 was the one
where we turned on and off the LEDs via the joypad.

Part A – Textbook Readings / Videos
The following might be helpful in preparing for the lab.

1. Textbook Chapters 4, 5, and 6 cover Thumb-2 assembly programming

2. The classnotes are also posted to the course website.

Part B – Prelab assignment
Setting Registers in Assembly

A lot of this lab will be setting up the peripheral registers. In C we could do something like this

RCC->AHB2ENR |= RCC_AHB2ENR_GPIOBEN;

That one C statement actually breaks down into a number of sub-steps:

1. First it gets the pointer to the RCC peripheral register. This is configured for you in provided code,
via pre-processor directives as seen below. The end result is that RCC is a pointer to the address
0x40021000. Why that address? (That’s where the manual says it is).

#define PERIPH_BASE ((uint32_t)0x40000000)
#define AHB1PERIPH_BASE (PERIPH_BASE + 0x00020000)
#define RCC_BASE (AHB1PERIPH_BASE + 0x1000)
#define RCC ((RCC_TypeDef *)(RCC_BASE))

2. We don’t want to access the raw RCC pointer, but the AHB2ENR field in the structure. This is at offset
0x4c from the beginning and the setup of this structure is defined for you in a header file. (Again,
you can find this info in the manual).

3. Once we have the address in memory we want, calculated from the base and the offset, we want to
OR it with RCC_AHB2ENR_GPIOBEN. On Thumb-2 this requires 3 operations because ARM is a
load-store architecture (meaning you can’t operate directly on memory addresses, you have to bring
values into registers first).

(a) Load the current value into a register.

(b) Perform the OR operation

(c) Store the updated value back out.

The equivalent Thumb-2 assembly will look like this:

ldr r1,=RCC_BASE
ldr r3,[r1,#RCC_AHB2ENR]
orr r3,#RCC_AHB2ENR_GPIOBEN
str r3,[r1,#RCC_AHB2ENR]

1. The first instruction loads the value 0x40021000 into r1. (RCC BASE is set up for you, similar to
the pre-processor, using EQU directives). We discussed the use of = to load 32-bit constants in class.
r1 was arbitrarily chosen, for this lab you can use any registers r0 - r10.

2. The next instruction loads into r3 the value found at r1 (RCC_BASE) plus the constant offset RCC_AHB2ENR,
which is 0x4C (the header defines that for you).

3. The orr instruction logically ORs r3 with the constant value RCC_AHB2ENR_GPIOBEN. Note the
is needed to indicate it is a constant. Also note we could have written that as

orr r3,r3,#RCC_AHB2ENR_GPIOBEN

A common shortcut is to leave out the first source register if it’s the same as the destination register.

4. Finally our updated r3 is written back to memory, to the same location we got it from.

You’ll find a lot of the coding is just these blocks of load/modify/store values. You’ll probably want to
cut-and-paste them a lot, as we haven’t learned how to do function calls yet.

If/Then/Else

Your code with have some if/then/else segments, where you read the joystick values on GPIOA and then set
the LED in one case and clear the LED in the other. You might want to think about what this code will look
like in advance of the Lab.

Loops

Your code will also have a loop, but an infinite loop. What does that look like in assembly?

Part C – Questions
1. When loading the pointer value into r1 we use = to do a PC-relative load from a value in the literal

area. Why can’t we just specify a 32-bit immediate target to a move instruction like the following?

mov r0,#0xdeadbeef

2. In the example code we orr with an immediate constant pre-pended with #. What would happen if
your immediate constant didn’t fit? How could you work around that issue?

2

