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Announcements

• Back from Memsys.

Related things: fast memories for network routers. They

can’t use off the shelf?

Memory is 100GB/s, starting to use similar to network

protocols

• HW#4 was due.

• Will try to get midterms graded ASAP
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The Network Layer

• Also “the internet protocol layer”

• Get packets from source to destination

• Critical, and much more complicated than Link Layer

• Connectivity, Scalability, and Resource Sharing problems

• Link any two machines around the world, connect billions

of machines
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• May require multiple hops

• Link layer: only between ends of wire

• Control Plane – control protocols on how packets

processed

Routing (find a path) and store (update routing info)

• Data Plane – how to process data packets

forwarding – transfer from incoming network to outgoing

3



Network Layer Design Issues

• Should be independent of router tech, should hide

topology and num, type of routers

• Network addreses should be uniform?

• Need to send packets between any two machines,

globally:

1. How to identify a host globally

2. How to connect different networks together

3. How to find a path between two hosts
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Internetworking

• Connecting various types of networks (ethernet, 802.11,

etc)

• A group of LANs connected togeter is an inter-network,

or ”Internet”
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Addressing

• Address at network layer needs to be global

• Needs to identify its network and the host itself.

Hierarchical
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Connection vs Connectionless

• Internet: Connectionless

Network is unreliable. Connectionless. Send/Receive

packet primitives. Packet ordering/flow control by higher

level

Each packet carry full destination address, as may travel

independetly of predecessors

• Telephony: connection

reliable networks
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Routing and Forwarding

• Routing: whch routes to use, find shortest path

• Forwarding: looking up which outgoing line to use

• Characteristics: simplicity/efficiency , robustness,

stability, fairness, optimality

• Simplicity: packets stored on routers, efficient resource

sharing

maintain good performance (low delay and packet loss)
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• Robustness: cope with changes w/o requiring all jobs

stopped and rebooted

• Stability: routing eventually converges on an equilibirum

• Fairness and optimality often conflicting

• Fairness example?

• Unicast routing: point to point

• Multicast routing: one to many or many to many
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Routing Algorithm Types

• Nonadaptive: not based on measurement, but computed

in advance. Static routing. sysadmin sets them. Do not

adapt well if routers fail.

• Adaptive: change routing decisions to reflect changes in

topology and traffic

centralized – require global information

quasi-centralized (?)

distributed – ?

hop-by-hop (internet. source routing?)
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Optimal Route?

• What do we optimize? Latency? Throughput? Number

of hops?

• Something like ssh might want lowest latency

• Multimedia might want high bandwidth and low jitter

• Often a “cost” is defined based on the desired

characteristics, and then this is optimized for
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Connectionless

• Packets sometimes called Datagrams

• Packets injected into network with no prior setup

• Router responsible for picking how it gets there, routing

algorithm

• Router makes “best-effort”. Tries to get things there,

but if packet gets lost, goes to wrong place, or arrives

out of order it doesn’t have to do anything about it.

12



Connection-Oriented

• Virtual circuit created

• Avoid creating a new route for every packet

• A route from source to destination created in all routers

along the way

• Each packet carries an ID saying what route it belongs

to
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Tradeoffs

• Setup: none / required

• Addressing: full source + dest / short virt circuit num

• State: no router state / each virt circuit has state

• routing: each packet independent / routing done at

startup

• router failure: can route around / all virt circuits

terminated
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• QoS: difficult / easy if resources allocated in advance

• congestion: difficult / easy of allocated in advance
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Optimality Principle

• If J is on optimal path from I to K, then optimal J to K

is on same route

• Set of all optimal routes from all sources to a destination

form a tree rooted at desitnation, called a “sink tree”.

Not necessarily unique

• Tree and not a loop, so packets delivered in finite number

of hops

• Though routers can come and go so things can go wrong
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(static) Shortest Path Routing

• Number of hops?

• Length (in meters?)

• Transmission delay?
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(static) Link State Routing

• Requires global information, routers broadcast the info

so all have consistent view

• Dijkstra Algorithm

Form least spanning tree

Find lowest cost iteratively

• Example based on one from Lin/Hwang/Baker
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T=set of known machines, C(X)=cost of X, p(X)=previous hop
Iteration T C(B),p(B) C(C),p(C) C(D),p(D) C(E),p(E)

0 A 4,A 1,A ∞ ∞
1 AC 3,C 4,C 2,C
2 ACE 3,C 3,E
3 ACEB 3,E
4 ACEBD

Iterative algorithm. Start not knowing anything but

direct connections. Pick shortest cost and add to set.

Update all the link costs. Repeat until all nodes added.
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Final routing table for A.
Path Cost Next

A-B 3 C

A-C 1 C

A-D 3 C

A-E 2 C
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(static) Flooding

• Every packet sent out on every outgoing line, with a

counter (set to the distance) so after so many hops

discarded

• Selective flooding, only floods out the connections going

in vaguely the right direction

• Very robust (can handle if routers droppign out

constantly)

• Flooding alwys chooses shortest path, as it finds all
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possible paths in parallel
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(dynamic) Distance Vector Routing

• Used by ARPANET until 1979

• Each router maintains a table (vector) giving best known

distance to each destination and line to use to get there

• Count to Infinity problem –
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A B C D E
D C N D C N D C N D C N D C N

1 B 4 B A 4 A A 1 A B 1 B C 1 C
C 1 C C 2 C B 2 B C 3 C D 1 D

D 1 D D 3 D E 1 E
E 1 E

2 B 3 C A 3 C A 1 A A 4 C A 2 C
C 1 C C 2 C B 2 B B 1 B B 2 D
D 4 C D 1 D D 2 E C 2 E C 1 C
E 2 C E 2 D E 1 E E 1 E D 1 D

3 B 3 C A 3 E
C 1 C B 1 B
D 3 C C 2 E
E 2 C E 1 E

1. Start with what you know
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2. Send routing table to neighbor

3. Update if find shorter route. This is all happening

simultaneously

4. Should convertge on Dijkstra.

• Looping problems: packets can get stuck in loops.

• Good news travels fast.
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Converges in two steps.
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• Bad news travels slowly.

A

B
50

C

1 to inf

8

D
1
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E1

1

A to C line goes down. Have bad timing.

C thinks fastest to A is E, E thinks fastest to A is still C.

C tells B+E cost to A is inf. E (old) tells C cost to A

still 2.

C updates with this info, path to A is 3 if go via E

E updates path to A is 4 if go via C

slowly loop, “counting to infinity”
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• Solutions to count to infinity

– Split horizon – a router should not tell neighbor back

the least cost it just got from that neighbor

– Poison Reverse – instead of not telling back, should

say the cost back to itself is infinity

– These only work for two hop loops. Other options to

send additional “next hop” data, or have a “hold down

timer” that lets things settle before updating info
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(dynamic) Link State Routing

• Problems with DVR: did not take delay into account,

took too long to converge

• Each router must:

1. Discover neighbors and learn network address

2. Measure delay or cost of each neighbor

3. Construct a packet telling all it learned

4. Send a packet to all other routers

5. Compute the shortest path to all other routers
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• Learning about neighbors: sends HELLO packet at boot

out all links

• Measure line cost: Send special ECHO paket and

measure return. Take into account load?

• Building link-state packets

• Distrbiuting

• Computing new routes
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Hierarchical Routing

• At some point not possible for every router to know

about every other

• Split into regions

• Example?
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