
ECE 435 – Network Engineering
Lecture 15

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

26 October 2016

http://web.eece.maine.edu/~vweaver

Announcements

• HW#5 due

• HW#6 posted

• Broadcasts on the MBONE

1

The Transport Layer

• Responsible for the end-points of a channel

• Provide process-to-process connectivity, and per-

segment error control and per-flow reliability, as well

as rate control

• Can be more reliable than underlying network

• TCP (Transmission Protocol Layer)

◦ connection oriented

◦ stateful

◦ per-flow reliability and rate control

2

• UDP (User Datagram Protocol)

◦ stateless

◦ connectionless

• the “socket” is the API from old homework

3

The Transport Layer

• application = process, data-transfer-unit is a segment,

traffic is a flow

• addressing – each process needs a unique ID. For

internet, this is the “port” number (16-bit)

• Rate control

– Flow control – between source and destination

– Congestion control – between source and network

None in link layer because only one hop?

4

Can be done by sender or network

• Real time requirements – things like video and audio

need extra info such as timestamp, loss rate, etc. So

hard to do with raw TCP/UDP

5

Unreliable, Connectionless – UDP

• User Datagram Protocol

• No reliability, no rate control, stateless

• Error control optional

• Provides process-to-process communication and per-

segment error control

• Packet header:

6

– 16-bits: source port

– 16-bits: destination port

– 16-bits UDP length

– 16-bits checksum (optional)

– data

• Can send UDP packets to a destination without having

to set up a connection first

7

Port Numbers

• 16-bit, so 64k of them

• Can map to any you want, but there are certain well-

known ones. Look in /etc/services. For example.

WWW is 80

• On most operating systems, ports below 1024 require

root (why?)

• Source/destination addr + source/destination port +

protocol ID (TCP or UDP) is a socket pair (or 5-tuple)

8

is 104 bits that uniquely identify a flow for IPv4. IPv6

has a specific field for this

9

UDP checksum

• If set to zero, ignored

• Receiver drops invalid checksums (does not request

resend)

• 1s complement of sum all 16-bit words in header and

payload

padded with 0s to be multiple of 16-bits

• Also added to the checksum is a 96-bit pseudo header

that has source IP, dest IP, protocol, length. Enables

receiver to catch problems with there to (delivered to

10

wrong machine)

• What happens if checksum is 0? entered as 0xffff

• Checksum considered mandatory on IPv6 because header

not checksummed

• Why would you ever leave checksum out? Takes time to

compute, might care about latency over errors [video?]

• Example:
◦ 0x0000: 8875 563d 2a80 0030 18ab 1c39 86dd 6002 .uV=*..0...9..‘.

0x0010: 2618 0031 1140 2610 0048 0100 08da 0230 &..1.@&..H.....0

0x0020: 18ff feab 1c39 2001 4860 4860 0000 00009..H‘H‘....

0x0030: 0000 0000 8844 e239 0035 0031 9c0e 8657D.9.5.1...W

0x0040: 0120 0001 0000 0000 0001 0377 7777 0465www.e

0x0050: 7370 6e03 636f 6d00 0001 0001 0000 2910 spn.com.......).

0x0060: 0000 0000 0000 00

11

◦ 16-bit sum of “virtual header” (two IPv6 addresses,

protocol (0x0011) and length of udp packet/header

(0x0031)) is 0x29f8c

◦ 16-bit sum of UDP header leaving off checksum is

0xe29f

◦ 16-bit sum of UDP data is 0x2e1c0

◦ Add them get 0x6 63eb

◦ It’s a 16-bit sum, so add 0x6 + 0x63eb = 0x63f1

ones complement is 0x9c0e, which matches the UDP

checksum field

12

UDP real-time

• Real-Time Protocol (RFC1889)

• On top of UDP, multiplexes

• data streams

• timestamps

13

TCP

• Transmission Control Protocol

• RFC 793 / 1122 / 1323

• Reliable, in-order delivery.

• Adapts to network congestion

• Takes data stream, breaks into pieces smaller than 64k

(usually 1460 to fit in Ethernet) and sends as IP

14

• No guarantees all packets will get there, so need to

retransmit if needed.

• Multiple connections can share same port (i.e. webserver

on port 80 can handle multiple simultaneous requests)

• Point-to-point (can’t multicast)

• Full duplex

• Byte stream, if program does 4 1024byte writes there’s

no guarantee how that will be split up and the other end

doesn’t see.

15

• PUSH flag can be sent that says not to buffer (For

example, if interactive command line)

• URGENT flag can be sent that says to transmit

everything and send a signal on the other side that

things are urgent.

16

TCP Header Format

• 16-bit source port

• 16-bit dest port

• 32-bit sequence number

• 32-bit ack number next byte expected, not last one

received

• 4-bit header length number of 32-bit chunks (includes

header)

• 6-bit reserved (not used)

• 6 bits of flags

17

◦ U (URGent) – also the urgent pointer puts to urgent

byte

◦ ACK – 1 if ack field valid, otherwise ack field ignored

◦ PSH – receiver should process the data immediately

and not buffer it waiting for more to come in

◦ RST (reset) – reset a connection because something

has gone wrong

◦ SYN – used to establish connection CONNECTION

REQUEST (SYN=1,ACK=0) and CONNECTION

ACCEPTED (SYN=1,ACK=1)

◦ FIN – used to release a connection

18

• 16-bit window size – Only in ACK, says how many bytes

to send back. This can be 0, which means I received

everything but I am busy and can’t take any more right

now (can send another ACK with same number and

nonzero window to restart)

• 16-bit checksum – similar to UDP also with pseudo

header

• 16-bit urgent pointer

• options (32-bit words)

◦ End of option – end of all options

◦ No operation – for padding

19

◦ MSS maximum segment size (only in initial SYN

packet)

◦ Fast connections sequence can wrap quickly.

◦ RFC1323 –PAWS, window scaling factor, specify

larger transfer size as on long-latency high-bandwidth

connections can end up idle a lot waiting for ACK

◦ RFC1106 allows selective resend – if lost packet in

long stream, instead of sending all, just resend missing

• data

20

TCP Connection Management

• Like UDP, 5-tuple

• How to handle delayed or retransmitted packets?

• Maximum 120s delay

• Three-way handshake (Tomlinson 1975)

– Choose random initial sequence number (ISN)

– Send SYN(SEQ=X) with port and sequence number

21

– Server sends back ACK(X+1) plus SYN(Y) with

sequence of own

– Client then ACK(Y+1) the server SYN,

• SYN number picked, not to be 0. Originally clock based

(random these days?). If machine reboots should wait

for maximum lifetime to make sure all close

• Closing connection

– client sends FIN

– server sends ACK of FIN

– server sends FIN

22

– client sends ACK of FIN

– If only one side sends FIN, other can still keep sending

data indefinitely

– Two army problem? If FIN not ACKed within two

packet lifetimes, will close anyway. The other side

eventually notices and closes too.

23

