
ECE 435 – Network Engineering
Lecture 16

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

31 October 2016

http://web.eece.maine.edu/~vweaver


Announcements

• HW#6 was posted, due Wed

• I’ll be at Linux Plumbers on Wednesday, so watch your

e-mail for the plan.

1



TCP

• Transmission Control Protocol

• RFC 793 / 1122 / 1323

• Reliable, in-order delivery.

• Adapts to network congestion

• Takes data stream, breaks into pieces smaller than 64k

(usually 1460 to fit in ethernet) and sends as IP

2



• No guarantees all packets will get there, so need to

retransmit if needed.

• Multiple connections can share same port (i.e. webserver

on port 80 can handle multiple simultaeneous requests)

• Point-to-point (can’t multicast)

• Full duplex

• Byte stream, if program does 4 1024byte writes there’s

no guarantee how that will be split up and the other end

doesn’t see.

3



• PUSH flag can be sent that says not to buffer (For

example, if interactive command line)

• URGENT flag can be sent that says to transmit

everything and send a signal on the other side that

things are urgent.

4



TCP Header Format

• 16-bit source port

• 16-bit dest port

• 32-bit sequence number

• 32-bit ack number next byte expected, not last one

received

• 4-bit header length number of 32-bit chunks (includes

header)

• 6-bit reserved (not used) ECN bits

• 6 bits of flags

5



◦ U (URGent) – also the urgent pointer puts to urgent

byte

◦ ACK – 1 if ack field valid, otherwise ack field ignored

◦ PSH – receiver should process the data immediately

and not buffer it waiting for more to come in

◦ RST (reset) – reset a connection because something

has gone wrong

◦ SYN – used to establish connection CONNECTION

REQUEST (SYN=1,ACK=0) and CONNECTION

ACCEPTED (SYN=1,ACK=1)

◦ FIN – used to release a connection

6



• 16-bit window size – Only in ACK, says how many bytes

to send back. This can be 0, which means I received

everything but I am busy and can’t take any more right

now (can send another ACK with same number and

nonzero window to restart)

• 16-bit checksum – similar to UDP also with pseudo

header

• 16-bit urgent pointer

• options (32-bit words)

◦ End of option – end of all options

◦ No operation – for padding

7



◦ MSS maximum segment size (only in initial SYN

packet)

◦ Fast connections sequence can wrap quickly.

◦ RFC1323 –PAWS, window scaling factor, specify

larger transfer size as on long-latency high-bandwidth

connections can end up idle a lot waiting for ACK

◦ RFC1106 allows selective resend – if lost packet in

long stream, instead of sending all, just resend missing

• data

8



TCP Opening Connection

• Like UDP, 5-tuple

• How to handle delayed or retransmitted packets?

• Maximum 120s delay

• Three-way handshake (Tomlinson 1975)

– Choose random initial sequence number (ISN)

– Send SYN(SEQ=X) with port and sequence number

9



– Server sends back ACK(X+1) plus SYN(Y) with

sequece of own

– Client then ACK(Y+1) the server SYN,

• SYN number picked, not to be 0. Originally clock based

(random these days?). If machine reboots should wait

for maximum lifetime to make sure all close

10



TCP Closing Connection

• Closing connection

• Almost like two independent one-way connections,

released independently

– one side sends packet with FIN

– other side sends ACK of FIN, that direction is shut

down

– other direction can keep sendin data though

– at some point other side sends FIN

– this is ACKed

11



– Two army problem? If FIN not ACKed within two

packet lifetimes, will close anyway. The other side

eventually notices and closes too.

12



TCP State Machine

• 11 possible states

◦ starts in CLOSED

◦ LISTEN – waiting for a connection

◦ SYN-SENT – started open, waiting for a returning

SYN

◦ SYN-RECEIVED – waiting for ACK

◦ ESTABLISHED – open, two-way communication can

happen

◦ FIN-WAIT-1 – application has said it’s finished

13



◦ FIN-WAIT-2 – the other side agreed to release

◦ CLOSE-WAIT – waiting for a termination request

◦ CLOSING – waiting for an ACK of closing request

both sides closed at once

◦ LAST-ACK – waiting for ACK from last closing

◦ TIME-WAIT – waiting to transistion to CLOSED long

enough to ensure other side gets last ACK

• large state diagram

14



Typical Connection seen from Client

• CLOSED, CONNECT/sends SYN (step 1 of handshake)

• SYN-SENT, gets SYN+ACK/sends ACK (step 3 of

handshake)

• ESTABLISHED, whent time to CLOSE send FIN

• FIN-WAIT-1, received ACK

• FIN-WAIT-2, one side not closed, wait for FIN/send

ACK

• TIME-WAIT (wait for timeout to ensure all packets done

in case ACK got lost)

15



• CLOSED

16



Typical Connection seen from Server

• CLOSED, wants to LISTEN

• LISTEN, gets SYN, sends SYN+ACK (step 2 of

handshake)

• SYN-RECVD, gets ACK

• ESTABLISHED, FIN comes in from client, sends ACK

• CLOSE-WAIT, closes itself, sends FIN

• LAST-ACK, gets ACK

• CLOSED

17



TCP Reliability

• Per-segment error control

– checksum, Same as UDP.

– also covers some fields in IP header to make sure at

right place

– TCP checksum is mandatory

– Checksum is fairly weak compared to crc32 in ethernet

• Per-flow reliability

– What to do in face of lost packets? Need to notice

18



and retransmit and handle out-of-order

– Sequence number generated for first blob (octet?),

32-bit number in header

– Sender tracks sequence of what has been sent, waiting

for ACK

– On getting segment, receiver replies with ACK with

number indicating the expected next sequence number,

and how much has been received. ”All data preceeding

X has been received, next expected sequence number

is Y. Send more”

– Selective ACK – has received segment indicated by

19



ACK

– Cumulative ACK – all previous data previous to the

ACK has been received

20



Window Management / Flow Control

• Sliding window

• example

◦ Receiver has 4k buffer

◦ Sender does 2k write (2k/SEQ=0)

◦ Receiver sends back ACK=2k, WIN=2048 (can take

up to 2k)

◦ Application sends 2k (2k, SEQ=2k)

◦ If it is full, receiver might send ACK=4k, WIN=0

◦ Later once buffer clears up a bit (application reads 2k

21



maybe) sends ACK=4096, WIN=2k

◦ Sender then sends some more

• When waiting on a WIN=0 can send two things, URG

to kill the connecction, or a 1-byte packet to have

retransmit window and next byte expected (in case the

ack restarting was lost, otherwise deadlock)

• Senders can buffer data, for example if know window is

4k can wait until they have 4k. Can help performance.

• For example, typing at keyboard on telnet/ssh might

send when an editor. Press key, send a packet. Get

ACK. Then when read, another ACK updating window

22



size. Then finally draw char on screen, send packet with

that. 4 packets for one keypress

• One way to help is avoid window updates for up to

500ms in hope they can tag along with a real outgoing

packet

• Nagel’s algorithm – when data coming in one byte at

time, send first then buffer rest until the first byte

acknowledged. Also take into account window size.

Widely used, can be bad for things like X window

forwarding as mouse movements bunched together.

TCP NODELAY option disables.

23



• Silly window syndrome – application reading out the

bytes one at a time. Send window updates each time,

other side resend one byte, send message window full,

etc. Solution (Clark) to wait until buffer is the original

max segment size, or half empty

24



TCP Congestion Control

• Fast network feeding small receiver (flow control?)

• Slow network feeding big receiver (problem on sending

side, lose packets, congestion control)

• Two windows, receiver window looked at previously, and

congestion window (kept locally)

• Amount can send is the minimum of the two windows

• Setup

◦ Congestion window set to max segment size

◦ Send one max segment, arm timer

25



◦ If ACK received before timer goes off, good. Double

the size.

◦ Repeat, exponetial growth. Called ”slow start”

◦ “internet (?)” has a limit where it stops exponential

and moves to linear growth

◦ eventually hit receiver window size and stop

• Changed over the years.

• Initial implementation no congestion control, not needed

(not that much traffic)

• After 8 years (1980s) introduced by Van Jaconson –

internet facing “congestion collapse” – would send as fast

26



as possible, packets would be dropped, hosts retransmit,

even more congestion

• TCP Tahoe (v2) (BSD 4.2 1988) added congestion

avoidance, fast retransmit (Van Jacobsen)

Slow start – probing bandwidth with few roungs.

cwnd set to 1 and exponentially increases with each ACK

until hits ssthreah

congestion avoidance – slow probing but rapid respond

to congestion

AIMD additive increase multiple decrease.

Fast retranmit– transmitting lost packets immediately,

27



no wait for timer. If get three duplicate ACKS in a row,

assume packet loss, resend. Drop sshthreah to half and

start slow-start again

retransmission timeout – halve sshthreash and restart

slow-start

• TCP Reno (v3) added fast recovery

set sshthread to cwnd+3 because of triple ack

• TCP New Reno

28



When to retransmit

• If packet lost, then will receive duplicate ACK on next

transmission

• If get three identical ACKs, probably means packet lost,

resend

• Why not two? Because if packets arrive out of order can

also cause duplicate ACK

29



TCP Timer Management

• What should the timer value be? Too short, send extra

packets, too long and takes long time to notice lost

packets.

• On the fly measures round trip time. When send

segment, start timer, updates.

• Connection Timer – send SYN. If no response in time,

reset

• Retransmission Timer – retransmit data if no ACK

30



• Delayed ACK timer – if send a packet, tag an ACK

along if timer expires and no outgoing data, have to

send stanadlone ACK

• Persist Timer – solve deadlock where window was 0, so

waiting, and missed the update that said window was

open again

• Keepalive Timer – if connection idle for a long time,

sends probe to make sure still up

• FIN WAIT 2 Timer – avoid waiting in this state forever

if other side cashes

31



• TIME WAIT TIMER – used in TIME WAIT to give

other side time to finish before CLOSE

32



When Things Go Wrong

• Data loss – after retransmit timeout, will notce and

retransmit

If packets just taking a long time, could end up

always retransmitting. Data gets in but huge waste

of bandwidth. see later.

• ACK loss

• out-of-sequence

• ECN explicit congestion notification – uses extra bits in

33



reserved flags, routers initially had trouble with this.

34



Security Issues

• SYN Flood attack – Denial of service – spoof IP address,

send lots of spurious SYNs followed by ACK, tie up lots

of resources

Spoof, because responds to wrong address which just

ignores. Causes lots of half-open connections

One solution is SYN cookies – (pick special sequence

that allow throwing out connection info but able to

reconstruct if an ACK comes back).

• Connection hijacking – guess a proper sequence number

35



and forge a packet that looks like it should be next. If you

can also take down the real IP (DOS?) can take over

the connection Helps to have good random sequence

numbers

• TCP veto – inject packet with sequence and payload of

next expected. That way when the real actual next one

comes in, it will be silently dropped as a duplicate

• NMAP port scanning – send packets and find if

connections are open, determine host system. Christmas

Tree packets

36



Find out host? options supported, sequence numbers.

Also can find out uptime of system as timestamps from

extension usually aren’t reset each time.

• Martian packets – packets with a source of a reserved

network found on routed internet

37



Making things faster

• Offload engines

38



Proposed Replacements

• T/TCP

• SCTP – stream control transmission protocol. More

complex

• Whatever google is up to

39


