
ECE 435 – Network Engineering
Lecture 21

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

21 November 2016

http://web.eece.maine.edu/~vweaver


Announcements

• HW#9 was posted Friday but Mainestreet was down

• Project status report

• Remember no class Wednesday, Thanksgiving

1



HW#8 Review

1. 0x0022: bda5 ___________________ Source port (48549)

0x0024: 0050 ___________________ Destination port (80)

0x0026: cdc4 6a49 ______________ Sequence Number

0x002a: 3c7b 6ca5 ______________ Acknowledgement Number

0x002e: 80 _____________________ 1000 header length = 8*4=32

0x002f: 18 _____________________ 11000 ACK+PSH

0x0030: 00e5 ___________________ Window Size = 229

0x0032: 79f4 ___________________ Checksum = 0x79f4

0x0034: 0000 ___________________ Urgent = ?

0x0036: 01 _Option: NOP (padding)

0x0037: 01 _Option: NOP (padding)

0x0038: 080a _Option: Timestamp, 10 bytes

0x003a: 0104 3e58 _Timstamp TSval

0x003e: 34a8 7bc3 _Timestamp TSecr Echo Reply

TCP_PART

0x0042: 4745 540a ______________ GET\n

2. server=http, *total* frame size= 4/70 = 5.7%

2



3. packet summaries. Can see timestamps set. why?

advanced flow control?

a) 3-way handshake [s] is syn

b) hi sent, acked, sends HI back, acked.

Why not piggy back ack on reply? took too long? als P

set?

c) closing down. F (FIN) set not really a handshake

4. Whois. maine.edu setup: December 1988

actually asked for umaine.edu which was 1997. registrar

is EDUCAUSE

3



5. dig

130.111.218.23

typo in example, weaver has no IPv6. maine.edu

2610:48:100:821::15

SOA not same as AAAA

nameo.unet.maine.edu / namep.unet.maine.edu

ALT1.ASPMX.L.GOOGLE.COM

4



Web Seach

• Web-bots index the web. robots.txt file

• Altavista, Hotbot, Excite, Inktomi, etc.

• Curated search like Yahoo (people organize links rather

than automatically search)

• Google (1996 some machine in Stanford, 1997-1998)

• MSN search 1999, rebranded Microsoft Bing 2009

5



telnet/rlogin/rsh/ssh

• telnet – login to remote system (tcp port 23) everything

(including passwords) sent in plain text

• rsh/rlogin – remote shell, remote login. (tcp port 514)

Didn’t even need password, could configure to let you

run commands on remote machine. Security based if

you had same username on both machines, assumption

was getting root on a UNIX machine and connected to

Ethernet was expensive/difficult

6



SSH secure shell

• tcp port 22

• can login, run commands, tunnel tcp/ip, tunnel X11, file

transfer (scp, sftp)

• Large number of RFCs

• Version 1 released 1995, originally freeware but became

private

• Version 2, openBSD people based on last free version

(2005)

• For security reasons there’s a push to drop Version 1

7



support

• uses public-key cryptography

• transport layer: arranges initial key exchange, server

authentication, key re-exchange

• user authentication layer: can have password, or can set

up keys to allow passwordless, DSA or RSA key pairs

• connection layer: set up channels

• lots of encryption types supported, old ones being

obsoleted as found wanting

• Various ssh servers/clients. openssh. dropbear

• Diffie-Helman key exchange? Based on discrete

8



logarithms?

9



encryption

• Plaintext is transformed by some sort of function

parameterized by a “key” into cyphertext. This is then

transmitted. The other side then decrypts it.

• What can be kept secret? Security by obscurity?

Kerckhoff’s principle: “All algorithms must be public;

only the keys are secret.”

• Combination lock analogy. Longer the key, the harder it

is to brute-force

• easy: rot13

10



Substitution cipher. Weakness: English text easy to

predict (’e’ most common letter)

• transposition cipher, keep letters same, re-arrange order

• hard: one-time-pad

unbreakable. Downside, must keep it, must have enough

bits, cannot reuse, transporting.

11



Symmetric Key Algorithms

• Use same key for encryption and decryption

• Block ciphers, take block of data and encrypt it to same

size block

• P-box, S-box

• shift/permute/xor

• *very* important that the key is picked randomly.

• DES – Data Encryption Standard

From 1976. 64 bit key (56-bits used) widely used until

broken. Competition to break various sizes.

12



• 3DES (running DES three times) [encrypt/decrypt/encrypt

with only two keys? Why? 112 bits seen as enough, also

if set keys to same then it’s same as single-DES (back

compat)]

• AES – Advanced Encryption Standard – replaces DES

NIST had a contest to find new standard

Rijndael won. Intel chips have AES instructions

13



Public Key Encryption

• Assymetric/Public Key

• Encryption key weakest link of symmetric encryption, as

both sides have it and if anyone leaks it, all is lost

• Have a public key that anyone can use to encrypt a

message. Can only be (easily) decrypted by a secret,

private key

• Hard to solve math problems. Integer factorization,

discrete logarithm, elliptic curves

• Often only used to encrypt small amounts of data,

14



i.e. used to encrypt a symmetric key used for longer

transactions

• RSA – Rivest/Shamir/Adleman at MIT

◦ Choose two large primes p and q (1024+ bits)

◦ n=p*q, z=(p-1)*(q-1)

◦ Choose number relatively prime to z: d

◦ Find e stuch that e*d=1 mod z

◦ Divide plaintest into blocks 0 le P lt n, blocks of k bits

where k largest 2k < n

◦ To encrypt, compute C = P emodn

◦ To decrypt, compute C = Cdmodn

15



◦ public key is e,n. private key is d,n

◦ Hard to break as you need to factor n (hard)

◦ How do you find p and q? Random number, then

apply various tests to determine if prime

◦ Example from Tanenbaum 8-17:

p=3, q=11, n=33, z=20. d=7 (no common factors

with 20)

e is 7e = 1mod20 so e=3

To encrypt say ”13”, 133 = 2197,mod33 = 19

To decrypt say ”19”, 197 = 893871739mod33 = 13

• Other Types

16



◦ Prime Number Factoring

◦ Elliptic Curve Cryptography (ECC)

Smaller keysize

• Common uses: public key encryption, public key used to

encrypt message only holder of private key can decrypt

digital signature: message signed with private key and

anyone with access to public key can verify the original

sender

17



Cryptographic Hash Functions

• Maps a document of arbitrary size to a fixed size

• Easy to calculate, hard to reverse. Only real feasible way

to reverse is brute-force search

• Should not be able to find two different messages with

same hash

• Small changes in document should lead to very different

hashes

• Two items with same hash are a collision

Are collisions useful? If you can map documents of

18



same filetype, or if somehow same document with lots

of garbage on end

• Break file up into chunks, do a series of operations to

“compress” it, often shift, xor, or, add, and, not

• md5 md5sum

128-bit md5 hashes, create checksum, uniquely ID file

Well, not really unique. It’s been broken, can find (with

great difficulty) collisions

• SHA-1

Developed by NSA

Used by git

19



• Uses: passwords (/etc/shadow), (mostly) uniquely iding

a file (git), verifying file contents (download, error

checking), bitcoin?

• Problem: how do you verify the public key belongs to

the person who they say it is? (on website? what if

someone intercepts and replaces, mitm style)

20



Certificate Authorities

• Certificate authorities

• Signed data block from official organization

• Hashed?

• Can be revoked

• Digital Signature Algorithm

21



Tools that use encryption

• PGP – pretty good privacy

Encrypt message with symmetric key, send along the key

encrypted via assymetric

was illegal for a while (more than 40 bit encryption an

exportable munition)

people got RSA algorithm in perl tattoos

• GPG – free software replacement for PGP

• SSH

• SSL/TLS:

22



Browser says which hashes/algorithms it supports

Server picks one and sends back

Server then sends a certificate (signed by authority)

saying who it is, and what its public key is

client verifies certificate

client generates a random number, encrypts with public

key, sends to server, used as symettric key (what could

go wrong, what if someone gets a hold of server private

key? could decrypt logged data)

Diffie-Hellman key exchange – random number plus

unique session key prevents problems if server private

23



key leaked

24



ssh security

• Fail2ban

• Nonstandard port

• Port knocking

• Call asterisk for one-time pin?

• No-password (key only)

• LCD device

25



problems

• Keys leaked (DVD/game console issues)

• poor random numbers used (Debian problem)

• differential cryptanalysis (start with similar plaintexts

and see what patterns occur in output) [DES IBM/NSA

story]

• Power/Timing analysis – note power usage or

timing/cache/cycles when encryption going on, can leak

info on key or algorithm

26


