
ECE 435 – Network Engineering
Lecture 4

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

7 September 2017

http://web.eece.maine.edu/~vweaver


Announcements

• HW#1 was due.

• HW#2 will be posted. Write a mini webserver.

1



HTTP/2

• 2015. RFC 7540

• Google push through, extension of their SPDY (speedy)

Microsoft and Facebook giving feedback

• Why does google care about (relatively) small increases

in web performance?

• Leaves a lot of high level things the same. Negotiate

what level to use.

• Decrease latency of rendering web pages:

◦ compress headers

2



◦ Server can push data the browser didn’t request yet

but it knows it will need (like images, etc)

◦ pipeline requests

Send multiple requests without waiting for response

good on high-latency links (FIFO on 1.1, new makes it

asynchronous)

◦ multiplex multiple requests over one TCP connection

◦ head-of-line blocking problem?

line of packets held up by processing of first

FIFO first requests waits until done until next, can’t

run in parallel

3



• Page load time 10-50% faster

• While can use w/o encryption, most browsers say will

only do with encryption

• Criticism: was rushed through. Is way complex. Does

own flow control (has own TCP inside of TCP) Re-

implements transport layer at application layer

4



What if Server Overloaded?

• Slashdot effect (modern: HackerNews?)

• caching/proxy – squid

• Content Delivery Network – akami

• Server farms

5



Security

• SSL – Secure Socket Layer

• Replaced by TLS (Transport Layer Security)

• Port 443 for https

• Public key encryption.

6



Setting Up a Web-server

• Apache

7



Web Seach

• Web-bots index the web. robots.txt file

• Altavista, Hotbot, Excite, Inktomi, etc.

• Curated search like Yahoo (people organize links rather

than automatically search)

• Google (1996 some machine in Stanford, 1997-1998)

• MSN search 1999, rebranded Microsoft Bing 2009

8



telnet/rlogin/rsh/ssh

• telnet – login to remote system (tcp port 23) everything

(including passwords) sent in plain text

• rsh/rlogin – remote shell, remote login. (tcp port 514)

Didn’t even need password, could configure to let you

run commands on remote machine. Security based if

you had same username on both machines, assumption

was getting root on a UNIX machine and connected to

Ethernet was expensive/difficult

9



SSH secure shell

• tcp port 22

• can login, run commands, tunnel tcp/ip, tunnel X11, file

transfer (scp, sftp)

• Large number of RFCs

• Version 1: 1995, originally freeware but became private

• Version 2: 2005, openBSD based on last free version

• For security reasons there’s a push to drop Version 1

• uses public-key cryptography

• transport layer: arranges initial key exchange, server

10



authentication, key re-exchange

• user authentication layer: can have password, or can set

up keys to allow passwordless, DSA or RSA key pairs

• connection layer: set up channels

• lots of encryption types supported, old ones being

obsoleted as found wanting

• Various ssh servers/clients. openssh. dropbear

• Diffie-Helman key exchange?

◦ This is a public/private key thing

◦ Based on discrete logarithms?

◦ Wikipedia has a weird colored paint analogy

11



Encryption

• Most crypto papers involve Alice and Bob (maybe Eve)

• Plaintext is transformed by some sort of function

parameterized by a “key” into cyphertext. This is then

transmitted. The other side then decrypts it.

• What can be kept secret? Security by obscurity?

Kerckhoff’s principle: “All algorithms must be public;

only the keys are secret.”

• Combination lock analogy. Longer the key, the harder it

is to brute-force

12



• easy: rot13

Substitution cipher. Weakness: English text easy to

predict (’e’ most common letter)

What about double-rot13?

• transposition cipher, keep letters same, re-arrange order

• hard: one-time-pad

unbreakable. Downside, must keep it, must have enough

bits, cannot reuse, transporting.

13



Secret Key Algorithm

• Key is secret

• How do you get it to the other person?

• How many keys do you need (ideally one per connection)

14



Symmetric Key Algorithms

• Use same key for encryption and decryption

• Block ciphers, take block of data and encrypt it to same

size block (why in blocks?)

• P-box (permutation), S-box (substitution)

• shift/permute/xor

• *very* important that the key is picked randomly.

• DES – Data Encryption Standard

From 1976. 64 bit key (56-bits used). NSA had say

on key size. 19 stages based on Key. widely used until

15



broken. Competition to break various sizes.

• 3DES (running DES three times) [encrypt/decrypt/encrypt

with only two keys? Why? 112 bits seen as enough, also

if set keys to same then it’s same as single-DES (back

compat)]

• AES – Advanced Encryption Standard – replaces DES

NIST had a contest to find new standard

Rijndael won. Intel chips have AES instructions

16



Public Key Encryption

• Assymetric/Public Key

• Encryption key weakest link of symmetric encryption, as

both sides have it and if anyone leaks it, all is lost

• Have a public key that anyone can use to encrypt a

message. Can only be (easily) decrypted by a secret,

private key

• Hard to solve math problems. Integer factorization,

discrete logarithm, elliptic curves

• Often only used to encrypt small amounts of data,

17



i.e. used to encrypt a symmetric key used for longer

transactions

• RSA – Rivest/Shamir/Adleman at MIT

◦ Choose two large primes p and q (1024+ bits)

◦ n=p*q, z=(p-1)*(q-1)

◦ Choose number relatively prime to z: d

(no common factors)

◦ Find e such that e*d mod z=1

◦ Divide plaintext into blocks 0 ≤ P < n, blocks of k

bits where k largest 2k < n

◦ To encrypt, compute C = P e mod n

18



◦ To decrypt, compute P = Cd mod n

◦ public key is e,n. private key is d,n

◦ Hard to break as you need to factor n (hard)

◦ How do you find p and q? Random number, then

apply various tests to determine if prime

◦ Example from Tanenbaum Figure 8-17:

Pick two large primes: p=3, q=11

n=p*q=33, z=(p-1)*(q-1)=20

d=7 (no common factors with 20)

7 ∗ e mod 20 = 1 so e=3

To encrypt say ”13”, 133 = 2197,mod33 = 19

19



To decrypt say ”19”, 197 = 893871739mod33 = 13

• Other Types

◦ Prime Number Factoring

◦ Elliptic Curve Cryptography (ECC)

Smaller keysize

• Common uses: public key encryption, public key used to

encrypt message only holder of private key can decrypt

digital signature: message signed with private key and

anyone with access to public key can verify the original

sender

20



Cryptographic Hash Functions

• Maps a document of arbitrary size to a fixed size

• Easy to calculate, hard to reverse. Only real feasible way

to reverse is brute-force search

• Should not be able to find two different messages with

same hash

• Small changes in document should lead to very different

hashes

• Two items with same hash are a collision

Are collisions useful? If you can map documents of

21



same filetype, or if somehow same document with lots

of garbage on end

• Break file up into chunks, do a series of operations to

“compress” it, often shift, xor, or, add, and, not

• md5 md5sum

128-bit md5 hashes, create checksum, uniquely ID file

Well, not really unique. It’s been broken, can find (with

great difficulty) collisions

• SHA-1

Developed by NSA

Used by git

22



• Uses: passwords (/etc/shadow), (mostly) uniquely iding

a file (git), verifying file contents (download, error

checking), bitcoin?

• Problem: how do you verify the public key belongs to

the person who they say it is? (on website? what if

someone intercepts and replaces, mitm style)

23


