ECE435: Network Engineering – Homework 10 Wireless / Bridging

Due: Friday, 19 April 2024, 5:00pm

For this homework short answers will suffice.

To submit, create a document with your answers (text, pdf, libreoffice, MS Office if you must) and e-mail them to *vincent.weaver@maine.edu* by the homework deadline. Title your e-mail "ECE435 Homework 10" and be sure your name is included in the document.

1. LANs / Switches

- (a) With a self-learning bridge/switch the switch learns the port/MAC mapping by looking at the SOURCE field in incoming Ethernet frames. How does it ensure the frame gets to the right destination if the DESTINATION MAC address is one it hasn't seen before?
- (b) List one reason why you might separate your LAN into separate networks, rather than having one big LAN.

2. Wireless

(a) You run iwconfig on a Raspberry Pi3 and get the following results:

It reports the Transmit power as 31 dBm. How much is that in Watts?

- (b) You are using WiFi at one of the 2.4GHz frequencies and you occasionally notice the signal drops out. What might be interfering with your connection? Is it legal for that interference to be happening?
- (c) How is the CSMA/CA (collision avoidance) mechanism used by WiFi different than the CSMA/CD (collision detection) used by wired ethernet? Why didn't WiFi use the wired Ethernet methodology?

3. Wi-fi Frame

I managed to put a wi-fi card into "monitor" mode and grabbed a data frame using wireshark. When in monitor mode, the operating system driver tacks a "wiretap" header onto the captured data that provides some extra info about the transmitter/receiver.

0x0000	00	00	38	00	2f	40	40	a0	20	08	00	a0	20	08	00	00	8./@@
0x0010	39	15	fa	00	00	00	00	00	10	6с	94	09	С0	00	bf	00	9
0x0020	00	00	00	00	00	00	00	00	7a	14	fa	00	00	00	00	00	z
0x0030	16	00	11	03	bc	00	bf	01	08	42	2с	00	b0	be	83	35	B,5
0x0040	19	80	00	1c	10	11	b4	С6	00	1c	10	11	b4	С4	30	e9	0 .
0x0050	d2	10	bf	00	81	b7	4e	f4	CC	6d	0b	се	80	0d	94	b2	Nm
0x0610	8b	20	b3	1b	0 c	96	bc	b5	1a	2a	66	00	ef	69	24	95	*fi\$.
0x0620	25	3d	4a	73													

A summary of some of the data gathered:

- Frame 1: 1580 bytes on wire (12640 bits), 1580 bytes captured (12640 bits) on interface wlp2s0
- Encapsulation type: IEEE 802.11 plus radiotap radio header (23)
- Arrival Time: Apr 13, 2023 00:53:45.284591806 EDT
- Data Rate: 54.0 Mb/s, Orthogonal Frequency-Division Multiplexing (OFDM)
- PHY type: 802.11g (ERP) (6)
- Channel: 9 Frequency: 2452MHz, Signal strength (dBm): -65 dBm

The actual frame starts at offset 0x38.

Fill in the missing fields in the chart below.

W	ifi HEADER	Name of Field	Decoded Value
0x0038:	08	FCS Protocol/Type	
0x0039:	42	FCS Flags	
0x003A:	2c 00		
0x003C:	b0 be 83 35 19 80		
0x0042:	00 1c 10 11 b4 c6		_
0x0048:	00 1c 10 11 b4 c4		_
0x004e:	30 e9		
		data	encrypted
0x061c:	af e5 0c e2	WEP-ICV	_
0x0620:	e0 aa 38 16		