ECE 435 – Network Engineering Lecture 1

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

Barrows 125, Tues 12:30pm

16 January 2024

Introduction

- Distribute and go over syllabus
- https://web.eece.maine.edu/~vweaver/classes/ece435_2024s

ECE435 – Office Hours

- Name
- Office Location: 203 Barrows
- Office Hours: 11am-noon Monday/Wednesday, drop in

Syllabus – Textbook

• (optional) Tanenbaum "Computer Networks"

Syllabus – Hardware

- Will he helpful to have a device with network connection (Ethernet, wifi) that you can run tests on
- Raspberry Pi is great because if you mess things up you can just pop in a new SD card
- Laptop or desktop is fine too. It helps if it is running Linux. Although most TCP/IP stacks are similar for backwards compatibility reasons.

ECE435 Syllabus – Homeworks

- Homeworks, 50%
- Roughly 10 total, lowest dropped
- Generally will be due on Thursday by beginning of class
- Will usually have at least a week to do them.
- Submission by e-mail, grades sent in response to that e-mail
- Will send out e-mail when posted on website

ECE435 Syllabus – Homeworks

- Will initially involve some coding
- Will involve some C coding, and maybe Linux command line
- Lab: no dedicated lab.

ECE435 Syllabus – Exams

- Midterm, 10%
- Final, 15%

ECE435 Syllabus – Project

- Project, 20%
- Involves using what we learn to do a networking-related project
- Can work in groups
- Open-ended, any language you want
- Presentation last week of class
- Writeup at the end
- More details as we get closer.

ECE435 Syllabus – Late Work

- Class participation, 5%
- Late work penalty please turn in work, even if late, even if incomplete.
 homework grade adds up
- Class notes will be posted on the website.

ECE435 Syllabus – Other

- COVID policy please don't come to class if you're super sick (and mask if possible if regular sick)
- Requesting Help please send code
- Academic Honesty please make sure your code is your own work
- Standard UMaine boilerplate stuff

Notes on the Class

• Note: not a lab class.

Programming routers with serial ports and subnetting not as key anymore

- Networking vaguely static from 1990s to ~5 years ago
- Lots has been changing recently, hard to keep up
- Used to be pretty open, now a lot happens inside of big companies, mostly google
- I often get really knowledgeable people in this class. If I make a mistake, let me know

Networking

In this class we will cover

- Computer Networks
- Computer Security

What is a Computer Network?

- A group of computers, connected so they can communicate
- Probably familiar with the Internet, which is a network of networks.

How can they be connected together?

- Wire (Ethernet, telephone, powerlines)
- Fiber Optic
- Wirelessly: radio, microwave, infrared, laser
- Sound?
- Barbed Wire? Wet string? Carrier Pigeons?

Why have networks?

- Resource sharing (printer, fileserver, etc.)
- Communication (e-mail, text messaging, videoconferencing, etc)
- Entertainment/Gaming
- Operating system/Security Updates
- Shopping
- Accessing Info

Why have network to your home?

 Older books would actually spell this out because back in the day people needed convincing to connect to the internet

Network Concerns that we'll Discuss

- Reliability
 - What makes a reliable network?
- Security
 - Is security a network-related problem? It makes local security issues exploitable world-wide...
- Expense
- Speed
 - Latency vs Bandwidth
- Addressing (how to find a machine)

- Error correction
- Scalability
 - \circ Trouble that appears as networks get bigger
- Standards
 - How do two computers understand each other? Who defines the rules?
- Privacy
 - Encryption? Trust? Authority? Tracking?
- Complexity
 - \circ A lot of networking used to be easy and hands-on
 - $\circ\,$ Things are now fast at the expense of understandability

Some Network terms

- Client/Server
- Broadcast vs point-to-point
- Wide area network, local area network
- Bandwidth vs Latency.
 1Gbps might be fast, but what if 100ms latency?
- Connection oriented vs packet based (Switched phone vs VOIP)
- Topology (star, ring, cube, mesh, hypercube)

OSI Reference Model

ISO/OSI Open Systems Interconnection (1984) ISO 7498

Many thought this would be the standard, but didn't end up that way

Everyone still talks about it anyway

Various layers each a new layer of abstraction.

Layers should be independent. Layering violations

 Physical – bits: the raw bits. How 0 and 1 encoded, electrons or photons, etc. pins, volts, timing, frequency topology, how wires laid out bandwidth

 Data Link – frames: Transforms raw line to one that handles errors, breaks up data into frames, etc. Unique identity for each device on network Flow control, error handling

3. Network – packets: management of subnet. How packets routed from one network to another, addressing. (routing: what is routing?)

4. Transport – end-to-end delivery

accepts a stream of bytes from above and make it suitable for the network layer.

Gets back split up packets and turns it back into a total message.

flow control, reliable delivery, error correction

5. Session – allows different machines to have sessions

between them. session management, synchronization. Lets different apps share one connection to the network.

- 6. Presentation syntax of data being transmitted. Char encoding, compression, encryption
- 7. Application high level protocol, like webserver (http), ssh, etc.

8th layer

- The user?
- Political? Financial? Government?

Summary

	OSI	TCP/IP
7	Application	Application
6	Presentation	
5	Session	
4	Transport	Transport
3	Network	Internet
2	Data Link	Host-to-network
1	Physical	Host-to-network

Layering

• Why is it good?

Abstraction. Easier to do one layer and do it right. Should the webserver be aware if it is serving over copper vs fiber?

• Counterpoint: RFC 3439: "Layering considered harmful" ("considered harmful" is a Dijkstra meme)

Results

- OSI (theoretical) never caught on for various reasons
- TCP/IP (practical) did, but has its own limitations which we'll discuss later

This year's Plan

• We'll start at the top and work our way down. Either way has issues

Coding

- Have you written a network program?
- How do you write a network program?
- We'll use C

