
ECE 435 – Network Engineering
Lecture 3

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

12:30pm, Barrows 125

23 January 2024

https://web.eece.maine.edu/~vweaver

Announcements

• Homework #1 was posted/due Thursday

• Sorry if last class was a bit overwhelming with the C

• Yes, HW#1 and #2 lots of low-level coding.

Amount of coding drops off a lot after HW#2.

• Challenge of good specifications, Postel’s Law

• Watch the weather

1

HW #1 notes – Debugging

• strace can be useful when tracking down issues and

showing what syscalls are doing

• netstat on a Linux machine can show what network

connections are active, including ports and addresses

• ss is the more modern tool people use instead of netstat

2

HW #1 notes – Socket Programming

• Finding the “struct sockaddr” can be difficult. even if

you find in under /usr/include it’s tricky as it’s a struct

that is multiplexed via casting (to handle all possible

socket types). Horrible thing about C.

3

HW #1 notes – Read/Write Issues

• A lot of this comes down to C, and it treats streams of

bytes and strings as mostly interchangeable, even though

there are a lot of pitfalls with that

• Some people are having issues where they are writing

256 bytes (write will write as many bytes as you said,

even if they are trailing zeros), but only reading 255.

This means the next read is going to get the last 0

rather than the following write.

• When reading, read(fd,buffer,size); What happens if you

4

read 10 bytes but other side only has 4? Only read 4

(result).

• What happens read 10 bytes and other size has 12? You

read 10 (result) but to get the rest you need to read

again, otherwise it’s there the next time you read. You

can do a while loop.

• Also note that when you write, you should specify how

many bytes you are writing or your whole buffer gets

sent even if empty.

5

HW #1 notes – Buffer Management

• Why not just malloc() each buffer to the exact size as

needed?

• The famous reply: “Now you have two problems”

• C manual memory management is almost as much of a

security problem as NUL-strings ar

• It’s also inefficient. But on modern GHz machines with

GB of RAM maybe that doesn’t matter.

6

HW #1 notes – Port Numbers

• Incoming port from the client isn’t going to be same as

the listening port on the server. The outgoing client port

is a random, higher value.

• Also if you see impossible or unlikely port numbers, be

sure you are remembering to use htons() and htonl()

to swap back from network byte order

7

Traditional Internet Servers

• Often Client/Server

• Server “daemon”

• Listens on port

◦ IANA (Internet Assigned Name Authority) “well-

known” ports 0-1023

◦ Registered (reserved) ports: 1024-49151

◦ Dynamic/Private 49152-65535

• Start at boot time? On demand? Old days inetd, these

days systemd

8

Server Types

• Concurrent – handle multiple connections at time (forks

or threads)

◦ Concurrent Connectionless – when need fast

turnaround, low latency DNS, NFS

◦ Concurrent Connection – widely used. WWW.

• Iterative – handles one connection at a time, rest wait

on queue

◦ Iterative Connectionless – common+trivial, short lived

◦ Iterative Connection – high latency

9

Protocols

• What type of protocol should talk?

• Fixed-length binary?

• Free-form ASCII text?

• 7-bit ASCII vs Unicode?

• Encrypted or compressed?

(security issues from compression?)

10

Internet, Pre-Web

• These days if someone says internet, often mean WWW

• What was the world like before the web?

◦ Mostly Text based

◦ Low-speed, high-latency connections

◦ e-mail, ftp, usenet, telnet

• What changed?

◦ Commercial companies allowed on

◦ Eternal September

11

The World Wide Web – precursors

• Before: getting files via cd-rom or ftp (or e-mail/ftp

gateways!), search with archie (archive w/o the V, not

comic related)

• gopher: university of Minnesota, 1991. search with

jughead/veronica

Why fail? UMN tried to charge license fee, much more

restricted file format than html.

12

The World Wide Web – history

• World-Wide-Web: Tim Berners-Lee, CERN, (NeXT

machine) Initial Proposal 1989, first text-based prototype

1991

• Marc Anderson UIUC worked on graphical browser,

Mosaic, 1993

• Anderson went on to form Netscape Communications

1994. Webserver software, made Navigator (“mozilla”)

relatively cheap/free to drive uptake of web servers.

• Microsoft Internet Explorer. Licensed version of Mosaic.

13

1995 (as add-on to Win95). MS paid percentage

royalties to Spyglass Mosaic, so what happened when

they gave it away for free?

• Browser wars.

• Netscape bought by AOL in 1998

• By 2000, IE had over 80% due to bundling with windows,

famous lawsuit

• Gap between IE6 and IE7 of 5 years (2001 to 2006)

• Netscape released firefox as open source in 2004

• Safari/Webkit browsers based off of KDE browser

• Google Chrome took over the lead around 2012 or so

14

• Standards fight. ACID test.

• IE cancelled, with Edge Microsoft joins everyone besides

firefox by using webkit-based engine

15

Top Browsers
1996 Mosaic Netscape IE

1.2% 77.3% 19%
2003 IE Firefox Safari Opera Navigator

94% 2% — 1% 1%
2010 IE Firefox Chrome Safari

42% 29% 11% 6%
2017 Chrome Safari IE Firefox Edge Opera Android

46.5% 21.5% 10.1% 6.3% 1.9% 1.3% 1.2%
2021 Chrome Safari Edge Firefox Samsung Opera

52.5% 23.9% 3.0% 4.4% 2.2% 1.0%

Stats from Wikipedia. EWS for 1996. TheCounter.com

for 2003, wikimedia 2010,2017,2021

Other browsers: midori, lynx, links, w3m

16

HTML

• HTML – hyper text markup language

• Based on SGML (Standard Generalized Markup

Language)

• Hypertext (documents that can link to each other)

actually proposed by Vannevar Bush in 1945

• Simplest form, just a text file with some extra commands

specified in angle brackets, and usually a closing tag

with a / in it. Case insensitive (though supposed to use

lowercase these days).

17

• Standards

◦ Internet Engineering Task Force (IETF) HTML 2.0 in

1994

RFC 1866, 1867, 1942, 1980, 2070

◦ Since 1996 by the World Wide Web Consortium (W3C)

◦ 2000 HTML (ISO/IEC 15445:2000)

◦ HTML 4.01 in 1999

◦ HTML5 by Web Hypertext Application Technology

Working Group in 2014

◦ Javascript (ECMAscript) ECMA-262 and ISO/IEC

16262

18

• HTML4 vs HTML5 vs XHTML

• XML extensible markup language, can do things like add

new tags on fly

19

Sample ancient HTML

<!DOCTYPE html>

<html>

<head><title>ECE435 Test</title></head>

<body>

<center><h1>ECE435 Test</h1></center>

<hr>

This is a test.

20

Line Break

<!-- Comment -->

<p> Paragraph

Bold <i>Italic</i>

A link to another page

</body>

</html>

• Tables also easy to do.

21

• Early on vendors went crazy with custom tags: Marquee

tag, Blink Tag. Frames.

• “view source”

• Originally idea was no formatting, web browser should

automatically display simple text in a way to best be

displayed on your local machine

Publishers/graphics designers got a hold of it and that’s

where all the pixel perfect positioning stuff came in

• CSS (cascading style sheets), Javascript

• Submitting back to the website, HTML forms

22

Dynamic Content – Server Side

• cgi-bin: Write a program that takes input as environment

vars, output as standard out sent to the requesting

browser.

Can write in any program. Typically was things like perl,

I often did this in C or even Fortran

• Dynamic content – SSI (server side includes)

• Server extensions (such as PHP, modperl, ASP, .NET)

more commonly used (with security issues)

23

Dynamic Content – Client Side

• Mostly Javascript

• Huge blobs of code that run on your computer, rather

than the server

• Lots of security implications

24

WWW client – brief overview

• A URL (uniform resource locator) specifies the document

you want

http://web.eece.maine.edu/~vweaver/

• Browser parses URL

• It looks up the address of web.eece.maine.edu via DNS

• DNS reports 192.168.8.99

• Browser makes TCP connection to port 80 (default) of

192.168.8.99

how do you specify other port? web.eece.maine.edu:8080

25

http://web.eece.maine.edu/~vweaver/

why would you want to?

security

• The client requests the file vweaver/index.html

(index.html is the default). Often there’s a server root,

and special handling for user dirs (with the tilde) that

are often in user home dirs, as in this case

• The server returns this file

• The TCP connection is closed

• The browser displays the text

• The browser might have to fetch any images linked to

by the document

26

Non-HTML

• You can serve up any kind of binary file. Often have

associated MIME-type like with e-mail

• Browser also often has built in support

• GIF (trouble due to patents), PNG. SVG?

• MP3 music? Movies?

• Plugins. Flash? Java? PDF?

27

Web-servers

• famously netcraft had a list (meme netcraft reports BSD

is dying)

• NCSA was first popular one

• Apache (“a patchy” version of NCSA) took over

• Microsoft IIS

• Other companies like Sun/Netscape/SGI

• nginx (“engine-x”)

Designed to be faster than apache (Apache has lots of

RAM overhead)

28

Solve c10k problem (having 10k concurrent socket

connections at once)

Now there’s the c10M problem

• lighthttpd (“lightly”)

29

simple web server

• Listen on port 80

• Accept a TCP connection

• Get name of file requested

• Read file from disk

• Return to client

• Release TCP connection

• How do we make this faster?

◦ Cache things so not limited by disk

(also cache in browser so not limited by network)

30

◦ Make server multithreaded

31

URLs

• URI (uniform resource identifier)

• URL (uniform resource locator) subset of URI, includes

info on how to find the resource (protocol and server)

• URN (uniform resource name) asks for a document but

from anywhere. I.e. give it something like an ISBN and

returns the book• scheme:[//[user:password@]host[:port]][/]path[?query][#fragment]

: / ? # [] @ reserved, must encode if use %3f

query key1=value1&key2=value2 or key1=value1;key2=value2

• protocol: http, ftp, file, news, gopher, mailto, telnet

32

Continued Next Lecture

33

