
ECE 435 – Network Engineering
Lecture 4

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

12:30pm, Barrows 125

25 January 2024

https://web.eece.maine.edu/~vweaver


Announcements

• HW#1 was due.

• HW#2 will be posted. Write a mini-webserver.

•

1



http

• HyperText Transfer Protocol

RFC 2068 (1997), RFC 2616 (1999), RFC 7230 (2016)

• Make ASCII request, get a MIME-like response

• Connect with TCP socket

• Plain text request, followed by text headers

• Expects carriage returns in addition to linefeeds

2



http Commands

• GET filename HTTP/1.1

get file

• HEAD

get header (can check timestamp. why? see if cache up

to date)

• PUT

send a file

• POST

append to a file (send form data)

3



• DELETE

remove file (not used much)

• TRACE

debugging

• CONNECT, OPTIONS

4



http three digit status codes

• 1xx – informational – not used much

• 2xx – Success – 200 = page is OK

• 3xx – Redirect – 303 = page moved

• 4xx – Client Error – 403 = forbidden, 404 = not found

• 5xx – Server Error – 500 = internal, 503 = try again

5



Example http request from browser

GET / HTTP/1.1

Host: 471-pi3:8080

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:109.0) Gecko/20100101 Firefox/109.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Connection: keep-alive

Upgrade-Insecure-Requests: 1

6



Selected http request headers (included
after GET)

• Host: server you are requesting

Can configure browser to open up helper util for this (for

example, run Office if it’s a word file)

• User-Agent (browser info). Can you lie? Can you leak

info?

• Accept-*: type of documents can accept, compression,

character set

• Authorization: if you need special permissions/login

7



• Referer [sic] URL that referred to here

• Cookie: deals with cookies

Statelessness – how do you remember setting, logins,

shopping cart, etc. “cookies”. Expire. Can be misused.

• If-Modified-Since – caching

8



Example http response

HTTP/1.1 200 OK\r\n

Date: Fri, 26 Jan 2024 04:56:25 GMT\r\n

Server: ECE435\r\n

Last-Modified: Sun, 26 Mar 2017 04:31:47 GMT\r\n

Content-Length: 64\r\n

Content-Type: text/html\r\n

\r\n

<html><head><title>Test</title></head>

<body>test</body></html>

9



Selected http response headers

• Content-Encoding,Language,Length,Type

• Last-Modified: helps with caching

• Location: used when redirecting

• Accept-Ranges: partial downloads (downloading a large

file, interrupted, can restart where left off)

• Content-Length: length of file being sent

• Content-Type: type of data

• Date: current date

• Server: Name of webserver (should you be reporting

10



this?)

11



http 1.0/1.1

• HTTP 1.0, single request was sent and single response.

Each file/image requested was separate TCP connection

• HTTP 1.1 (1997) supports persistent connections,

allowing multiple requests to happen with one TCP

connection (lowering overhead). How do you know

when to close? (timeout after 60s?)

• For improved performance, open multiple simultaneous

connections instead? Yes, but frowned upon

(server/network load)

12



HTTP/2

• 2015. RFC 7540

• https://http2.github.io/faq/

• Google push through, extension of their SPDY (speedy)

Microsoft and Facebook giving feedback

• Why does google care about (relatively) small increases

in web performance?

• Leaves a lot of high level things the same. Negotiate

what level to use.

• Decrease latency of rendering web pages:

13

https://http2.github.io/faq/


◦ compress headers

◦ Server can push data the browser didn’t request yet

but it knows it will need (like images, etc)

◦ pipeline requests

Send multiple requests without waiting for response

good on high-latency links (FIFO on 1.1, new makes it

asynchronous)

◦ multiplex multiple requests over one TCP connection

◦ head-of-line blocking problem?

line of packets held up by processing of first

FIFO first requests waits until done until next, can’t

14



run in parallel

• Page load time 10-50% faster

• While can use w/o encryption, most browsers say will

only do with encryption

• Criticism: was rushed through. Is way complex. Does

own flow control (has own TCP inside of TCP) Re-

implements transport layer at application layer

• Can check if your web-browser implements HTTP by

going to https://http2.golang.org/

15

https://http2.golang.org/


HTTP/3 or H3

• Standardized by RFC 9000 (QUIC) and 9114 (HTTP/3)

• As of 2024 supported by most web-browsers

• Web-servers, supported by IIS and nginx, no Apache

support yet

• https://blog.apnic.net/2023/09/25/why-http-3-is-eating-the-world/

• Uses QUIC – runs sort of custom network congestion

protocol in userspace over top of UDP

• HTTP/3 started as HTTP/2 over QUIC but has

developed more

16

https://blog.apnic.net/2023/09/25/why-http-3-is-eating-the-world/


• QUIC is almost more of a TCP replacement

• HTTPS only

• Can handle better roaming around switching IP addresses

w/o losing connection

• Interface is no longer a sockets interface

17



HTTP/3 Firefox issue 2022

• https://hacks.mozilla.org/2022/02/retrospective-and-technical-details-on-the-recent-firefox-outage/

• Firefox stopped responding worldwide because of a bug

in their HTTP/3 stack made their telemetry break a few

weeks ago

• The fact that they let the telemetry break the browser is

a whole other concerning tale

• But it turns out recent firefox has HTTP/3 set to

automatic, and will use it if found, and google has been

rolling out HTTP/3

18

https://hacks.mozilla.org/2022/02/retrospective-and-technical-details-on-the-recent-firefox-outage/


• Part of the bug is http headers are supposed to be

case-insensitive, and HTTP/2, HTTP/3 suggests they

should be all lowercase, which can break your parser if

you don’t expect it

• Postel’s Law in action?

19



Do you need a browser? (old)

telnet www.maine.edu 80

GET / HTTP/1.1

Host: www.maine.edu

(enter)(enter)

control-]

close

20



Do you need a browser? (https)

openssl s_client -connect www.maine.edu:443

GET / HTTP/1.1

Host: www.maine.edu

(enter)(enter)

21



Do you need a browser? (HTTP2)

openssl s_client -connect http2.akamai.com:443

GET / HTTP/1.1

Host: http2.akamai.com

Does not work.

See http://www.chmod777self.com/2013/07/http2-status-update.html

But need to first send a binary SETTINGS frame.

50 52 49 20 2a 20 48 54 54 50

2f 32 2e 30 0d 0a 0d 0a 53 4d

22

http://www.chmod777self.com/2013/07/http2-status-update.html


0d 0a 0d 0a 00 00 04 00 00 00

00 00

Then HEADERS frame, then compressed HEADERS.

Response is compressed HEADERS and DATA frames.

23



How simple can a server be?

• My Apple II webserver project

http://www.deater.net/weave/vmwprod/apple2_eth/

24

http://www.deater.net/weave/vmwprod/apple2_eth/


High-Level WWW Concerns

25



Compression

• Even with 1.1 could use deflate compression

• CRIME attack, could figure out encryption things by

seeing how well values compressed (?)

• Because of this http compression is usually disabled

• http2 HPACK special compression to be resistant

26



What if Server Overloaded?

• Slashdot effect (modern: HackerNews?)

• caching/proxy – squid

• Content Delivery Network – akami

• Server farms

27



Web Security

• SSL – Secure Socket Layer

• Replaced by TLS (Transport Layer Security)

• Port 443 for https (we’ll talk about soon)

• Public key encryption.

28



Web Privacy

• Cookies

• Cross-device tracing

• Browser Fingerprinting

29



Setting Up a Web-server

• Apache

• Easy to do, more difficult to secure

30



Web Seach

• Web-bots index the web. robots.txt file

• Altavista, Hotbot, Excite, Inktomi, etc.

• Curated search like Yahoo (people organize links rather

than automatically search)

• Google (1996 some machine in Stanford, 1997-1998)

• MSN search 1999, rebranded Microsoft Bing 2009

31



HW#2

• Can use existing server code, will connect to it with any

web-browser

• Listen on port 8080 (why not 80?)

• Once browser connects, read entire request into buffer

(more proper way to dynamically allocate memory?)

• Ignore most of the headers, mostly want to parse the

GET request

• Generate headers for response

• Send header and file back to browser over socket

32



• Handle a few corner cases, like 404 errors

33



HW#2 Hints

• Get the header printing first, then worry about

correctness of headers (dates, length))

34



HW#2 – Parsing for filename

• Know how to search for a string and point to location

after it?

◦ Find a string and point to beginning of it.
char *pointer;

pointer=strstr(haystack ,needle );

◦ Look for "GET "

Actually points to beginning of GET. How to skip

ahead?

◦ pointer+=4 is one way. (pointer math, ugh)

◦ How to get to first space?

35



◦ strtok(pointer," ");

Will split the string into chunks, put 0 at end.

◦ Also can do this manually;
pointer2=pointer;

while (* pointer) {

if (pointer ==’ ’) {

*pointer =0;

break;

}

pointer ++;

}

printf("%s\n",pointer2 );

36



HW#2 – Constructing the Headers

• Know how to construct a string on the fly? strcat(),

sprintf()

strcpy() first bit in.

strcat() additional strings.

If you want formatting you can do things like
sprintf(temp_string ,"File size=%d\r\n",filesize );

strcat(out_string ,temp_string );

Create big enough buffer.

37



HW#2 – Calculating Content-length

• How to find size of a file?

• Can read it in, and count. Note: don’t use strlen() for

this as a binary file might have zeros in it

• Might be better to use stat() (man stat.2) need .2

(or man -a) as there’s a command line tool called stat

that comes ip first.

38



HW#2 – Reading/Writing File

• How to read/write file. There are a large number of

ways to do this. open()/read()/write()/close

fopen()/fread/fwrite/fclose (careful! Buffered!

And maybe need fdopen() to print to file descriptor).
fd=open(filename ,O_RDONLY );

if (fd <0) fprintf(stderr ,"Error opening %s\n",filename );

while (1) {

result=read(fd ,buffer ,256);

if (result <=0) break;

write(network_fd ,buffer ,result );

}

Be sure to close afterward.

39



HW#2 – Getting Filetype

• Easiest way is calculating based on extension

• Take filename, look for . and compare after it

• Can use strstr() again, but think of corner cases

What if multiple dots? What if no dots?

40


