
ECE 435 – Network Engineering
Lecture 5

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

12:30pm, Barrows 125

30 January 2024

https://web.eece.maine.edu/~vweaver


Announcements

• HW#1 will be graded soon

• HW#2 posted, chanted due date to Friday.

This is possibly the most difficult assignment.

1



HW#1 Review – Notes

• Aside, why port 31337? (LEET speak)

https://en.wikipedia.org/wiki/Leet

• Don’t ignore compiler warnings.

What if toupper() not found?

manpage. Need to include ctype.h

• Make sure your code doesn’t segfault

• Comment your code!

2

https://en.wikipedia.org/wiki/Leet


HW#1 Review – Writing Data

• With write syscall, need to set the size to send back.

• If you always send size of BUFFER even if not full, it

sends lots of useless zeros.

• You can use strlen() to get size of string (don’t use

sizeof())

• Also if you got the data with a read() call, the return

value of that is how many bytes that were read into the

BUFFER.

3



HW#1 Review – Specifications

• When you type “bye” it would exit both sides.

(bye by itself? cr/lf? byet?

• Postel’s Law: strict what send, generous receive?

• Example of browser accepting herf instead of href? why

could this be bad?

4



HW#1 Review – Something Cool

• Command line arguments

◦ Don’t interfere with default behavior (unexpected)

◦ Is good to print expected command lines if there’s an

error, or have a help option

◦ Can you just document it in the README? Sadly

people don’t always read documentation?

• Printing port/address

◦ Biggest issue is forgetting to use htons() on the port

and htonl() on address

5



◦ This might not be obvious if you don’t know what

the port/address should look like (netstat or ss can

help)

6



HW#1 Review – Questions

• OSI reference model – was hoping for names not number

◦ Bits and voltages – physical layer (1?)

Not hardware layer

◦ Routing packets – network layer (3?)

7



Homework #2 Notes – Connecting

• If connecting on same machine, can use localhost

if over network, must use IP address.

• Can find this various ways (ip addr on Linux)

• Be aware depending on how your network is set up

(firewalls, if behind NAT, etc) you might not be able to

connect to your test machine remotely

8



Homework #2 Notes – Common Issues

• If browser confused, be sure you aren’t sending extra

zeros. strlen() is your friend

• If browser gets some data but then just spins waiting, be

sure your Content-length field is set with the proper size

Note it’s the size of file you are sending, does not include

header size.

9



Homework #2 Notes – Debugging

• A powerful tool is using

wget -S localhost:8080/test.html

which will show you the headers your server is sending

and download the file so you can verify the contents.

Note you might need to install the wget tool (easy to

do on Linux, maybe more difficult elsewhere)

• The strace tool can also be useful as it can show you

the bytes being sent by the various syscalls

• If getting segfaults, try using gdb but that’s sort of a

10



last-resort type thing

11



HW#2 Hints – Reading Request

• First be sure you are getting the incoming header. Print

it or use strace to verify.

• Some web-browsers might send really big requests, be

sure getting it all

◦ Use big enough buffer? 4096 bytes? How big?

◦ How would a “proper” server do this?

malloc(), realloc() if not big enough?

Overkill for this homework. You can try this, but only if

you know what you are doing. Goal of this assignment

12



is a simple server not perfect server.

◦ Just use a bigger buffer if necessary and error if you

get bigger, don’t waste time chasing pointers/segfaults

13



HW#2 Hints – Parsing the Request

• Know how to search for a string and point to location

after it?

◦ Find a string and point to beginning of it.
char *pointer;

pointer=strstr(haystack ,needle );

◦ Look for "GET "

Actually points to beginning of GET. How to skip

ahead?

◦ pointer+=4 is one way. (pointer math, ugh)

◦ How to get to first space?

14



◦ strtok(pointer," ");

Will split the string into chunks, put 0 at end.

◦ Also can do this manually;
pointer2=pointer;

while (* pointer) {

if (pointer ==’ ’) {

*pointer =0;

break;

}

pointer ++;

}

printf("%s\n",pointer2 );

• Be sure to strip off initial /, and if it’s just / return

index.html

• Do you need to handle spaces in the filename?

15



Thankfully no, URLs can’t have spaces

16



HW#2 Hints – Generating Response
Headers

• Print to stdout to verify what sending, also can use lynx

/ wget.

• Know how to construct a string on the fly?

◦ One way is to have empty string, than use strcpy()

first bit in. strcat() additional strings.

◦ Easier might be sprintf() If you want formatting

you can do things like
sprintf(temp_string ,"File size=%d\r\n",filesize );

strcat(out_string ,temp_string );

17



◦ snprintf() might be a bit safer as you can specify

the max length of the string (to avoid overflowing)

◦ Try not to be too fancy with one gigantic sprintf()

call as C can evaluate function parameters in arbitrary

orders

18



HW#2 Hints – General C annoyances

• When you use a char pointer to point into a string (as

when using strstr() or strtok() remember what you

have is a pointer, not a copy of the string you’re pointing

to. So if the buffer gets freed or re-used your pointer

may suddenly point to something different.

19



HW#2 Hints – Getting Size of File

• Can read it in, and count.

• Or can use the stat (man stat.2)

need .2 (or man -a) as there’s a command line tool

called stat that comes up first.

20



HW#2 Hints – Sending File Contents

• Reading file into buffer then writing to socket

◦ I don’t recommend this as you have to dynamically

handle different file sizes

◦ If you do this, don’t use sprintf() with %s to print the

contents. Won’t work if 0 in file

• Reading/Writing in chunks

◦ open()/read()/write()/close

◦ fopen()/fread/fwrite/fclose (careful! Buffered!

And maybe need fdopen() to print to file descriptor).

21



fd=open(filename ,O_RDONLY );

if (fd <0) fprintf(stderr ,"Error opening %s\n",filename );

while (1) {

result=read(fd ,buffer ,256);

if (result <=0) break;

write(network_fd ,buffer ,result );

}

Be sure to close afterward.

22



HW#2 Notes – Knowing Request is Done
(part1)

• This probably isn’t needed for this assignment, but can

be useful if you re-use code for your project

• When reading in data from a socket, you probably want

to read in the entirety of a request even though it might

be split across multiple reads (so read() in a while(1)

loop)

• You might also want to read all you can and then have

your client or server handle the request. However if

23



the last read() call blocks forever waiting then your

program is stuck waiting and can’t accomplish anything

else

• Is there a way to have interactive programs that are also

waiting for socket data?

24



HW#2 Notes – Knowing Request is Done
(part2)

• Can you just assume each read() matches an exact

write() from the cient?

◦ No: TCP is a byte stream, you can’t see packet

boundaries and they might not correspond to the

write() calls on the other side anyway

• Can you infer that there’s more data based on the

content being sent?

◦ Yes, for example if the data read ends in a new-line it

25



could mean the transaction is done

◦ Your protocol can contain info that lets you know how

long things are (content-length), or have a signal (like

the empty newline in http after headers) that let you

know

• Can you have non-blocking read() calls?

◦ You can set the fd to be non-blocking

◦ The recv() call (unlike read() has some extra flags

that can help. On Linux can pass MSG DONTWAIT

which will not-block and just return an error if no data

is available

26



◦ Note in these cases you have to periodically poll the

socket to check for input which might not be optimal

◦ You can use poll() or select() to be notified when

a fd has data but that’s complex

◦ You can also possibly set up multiple threads with

pthreads or similar, with one thread handling the socket

I/O

27



Remote Connections

• One of the first uses of networks was logging into remote

computers

• In the old days computers were super expensive

• Often there’d be one big one in a central location and you

could connect remotely with smaller, cheaper terminals

28



Historical – telnet

• log in to remote system

• (tcp port 23)

• everything (including passwords) sent in plain text

• client not much more complex than HW#1

• telnetd server providing connections, gives you a login

via the Linux pty (pseudo-tty) interface

29



Historical – rsh/rlogin

• remote shell, remote login

• (tcp port 514)

• Didn’t even need password, could configure to let you

run commands on remote machine

• Security based if you had same username on

both machines, assumption was getting root on

a UNIX machine and connected to Ethernet was

expensive/difficult

30



SSH secure shell (background)

• Encrypts a connection between machines

• tcp port 22

• can login, run commands, tunnel tcp/ip, tunnel X11, file

transfer (scp, sftp)

• Large number of RFCs

• Version 1: 1995, originally freeware but became private

• Version 2: 2005, openBSD based on last free version

• For security reasons support for Version 1 essentially

discontinued

31



SSH (implementation)

• uses public-key cryptography

• transport layer: arranges initial key exchange, server

authentication, key re-exchange

• user authentication layer: can have password, or can set

up keys to allow passwordless, DSA or RSA key pairs

• connection layer: set up channels

• lots of encryption types supported, old ones being

obsoleted as found wanting

• Various ssh servers/clients. openssh. dropbear

32



• Diffie-Helman key exchange (we’ll talk about this later)

33



ssh downsides

• Any downsides?

• Takes a lot of compute power. Not a problem for most

modern machines.

• Maybe more of an issue on small embedded systems

• Does make it hard to put your 8-bit machine on the

internet without a helper device

• Older protocols/keys expire which can make it hard to

connect to older machines/operating-systems

34



ssh security

Brute forcing passwords is a major issue.

• password reuse from compromised machines

• Fail2ban

• Nonstandard port

• Port knocking

• Call asterisk for one-time pin?

• No-password (key only)

• Two-factor authentication (LCD keyfob)

35



Alternatives to SSH?

• mosh

36



Encryption Background

• Most crypto papers involve Alice and Bob (maybe Eve)

• Plaintext is transformed by some sort of function

parameterized by a “key” into Ciphertext.
This is then transmitted. The other side then decrypts

• What can be kept secret? Security by obscurity?

Kerckhoff’s principle: “All algorithms must be public;

only the keys are secret.”

• Combination lock analogy. Longer the key, the harder it

is to brute-force

37



Encryption Types – Substitution

• Substitute each character for another with lookup table

• Decrypt by just doing the reverse

• Trivial Example: rot13 (Ceasar Cipher)

◦ A-N, B-O, C-P, etc.

◦ Weakness: English text easy to predict (’e’ most

common letter)

◦ What about double-rot13?

38



Encryption Types – Transposition

• transposition cipher, keep letters same, re-arrange order

39



Encryption Types – One Time Pad

• Unbreakable

• Downsides: must have enough bits, cannot reuse,

transporting.

40



Secret Key Algorithm

• Key is secret

• How do you get it to the other person?

• How many keys do you need (ideally one per connection)

41



Symmetric Key Algorithms

• Use same key for encryption and decryption

• Block ciphers, take block of data and encrypt it to same

size block (why in blocks?)

• P-box (permutation), S-box (substitution)

• shift/permute/xor

• *very* important that the key is picked randomly.

42



Symmetric Key Implementations –
Historical (DES)

• DES – Data Encryption Standard

• From 1976

• 64 bit key (56-bits used)

• NSA had say on key size.

• 19 stages based on Key

• widely used until broken.

• Competition to break various sizes.

43



Symmetric Key Implementations –
Historical (3DES)

• 3DES (running DES three times)

• encrypt/decrypt/encrypt with only two keys?

• Why? 112 bits seen as enough, also if set keys to same

then it’s same as single-DES (back compat)

44



Symmetric Key Implementations – AES

• AES – Advanced Encryption Standard

◦ replaces DES

◦ NIST had a contest to find new standard

◦ Rijndael won

developed by two Belgian cryptographers Joan Daemen

and Vincent Rijmen

◦ NSA allows for classified data

Intel chips have AES instructions

Galois Field Theory (Gal-wah) interesting math guy

45



AES Encryption

1. Key Expansion

2. AddRound on initial key (add/xor on round key)

3. 9/11/13 rounds (depending on key size)

(a) SubByte: non-linear substitution (w lookup table)

(b) ShiftRows: transposition/row shift

(c) MixColumns: mix columns (matrix multiply)

(d) AddRound (xor again)

46



4. Final round: a,b,d again

47



AES Attacks

• In theory take billions of years to brute force

• “Attack” means finding some way to decode key faster

than brute force

• Have been some but none really effective yet

• Side Channel Attacks are possible though

48



AES Performance

• Pentium Pro 200MHz: 11 MBits/s

• Modern Intel/AMD with AES in hardware, multiple GB/s

49


