ECE 435 — Network Engineering
Lecture 6

Vince Weaver
https://web.eece.maine.edu/~vweaver
vincent.weaverOmaine.edu

12:30pm, Barrows 125

1 February 2024

https://web.eece.maine.edu/~vweaver

Announcements

e HW#3 will be posted. Encryption. No coding.
e HW#2 was extended to Friday

o If you send a e-mail wanting help with homework, be
sure to make the e-mail subject reflect that (otherwise |
might take longer to reply)

Asymmetric / Public Key Encryption

e Asymmetric/Public Key

e Key exchange is weakest link of symmetric encryption,
as both sides need it and if it leaks, all is lost

e Have a public key that anyone can use to encrypt a
message. Can only be (easily) decrypted by a secret,
private key

e Hard to solve math problems. Integer factorization,
discrete logarithm, elliptic curves

Why not use Asymmetric for everything?

e Often only used to encrypt small amounts of data,
l.e. used to encrypt a symmetric key used for longer
transactions

e High overhead and requires high-quality random
numbers, hard to use it for large amounts of data

Uses of Public Key Crypto

e public key encryption
o public key used to encrypt message only holder of
private key can decrypt
e digital signature
o message signed with private key and anyone with
access to public key can verify the original sender

RSA

e Rivest/Shamir/Adleman at MIT (1977)
Discovered before by UK govt (1973) but classified

e Choose two large primes p and q (1024+ bits)

e Compute: n=p*q, z=(p-1)*(g-1)

e Choose number relatively prime to z: d
(no common factors)

e Find e such that e*d mod z=1

e Divide plaintext into blocks 0 < P < n, blocks of k bits
where k largest 2F < n

-y 5

o encrypt, compute C' = P° mod n
o decrypt, compute P = C? mod n

obublic key is e,n. private key Is d,n
Hard to break as you need to factor n (hard)

How do you find p and q? Generate random number,
then apply various tests to determine if prime (there are
algorithms for that)

RSA Example

e Example from Tanenbaum Figure 8-17:
Pick two large primes: p=3, q=11
n=p*q=33, z=(p-1)*(q-1)=20
d=7 (no common factors with 20)
7*xe mod 20 =1 so e=3
private key=7,33 public key=3,33
o encrypt 13", 13% = 2197, mod33 = 19
o decrypt "19", 197 = 893871739mod33 = 13

Why RSA Not Used Anymore

e Needs really good random primes, if you pick bad primes
can be easier to crack (if p and q too close together)

e Slow, so on low-power devices tempting to pick low value
exponents

e Adding more bits only slowly adds better encryption

e No random element, so can tell if the same message
sent twice because will encrypt to the same (or can
brute force easier)
Fix to this is random padding at end

-y g

e Improper padding can lead to “padding oracle” attack
(if you get an invalid padding error on invalid cyphertext,
can slowly work your way to the key)

RSA Replacements

e RSA 2048 bit but even that might not be enough

e DSA (NIST 1991 / FIPS 1993)
o built on modular exponentiation / discrete logarithms
o Roughly same security with keysize as RSA

e ECDSA - elliptic curve cryptography (ECC) (1999)
o Algebraic structure of elliptic curves on finite fields

o Can provide same security with smaller keys than
RSA/DSA

o Endorsed by NSA

/Y 10

o 1024 bit RSA equivalent to 160 bit ECC

11

Cryptographic Hash Functions

e Maps a document of arbitrary size to a fixed size

e Easy to calculate, hard to reverse. Only real feasible way
to reverse is brute-force search

e Break file up into chunks, do a series of operations to
“compress’ it, often shift, xor, or, add, and, not

e Small changes in document should lead to very different
hashes

/Y 12

Hash Collisions

e Should not be able to find two different messages with
same hash

e [Two items with same hash are a collision

e Are collisions useful? If you can map documents of
same filetype, or if somehow same document with lots
of garbage on end

-y 13

Cryptographic Hash Algorithms — md5

e md5 md5sum (Rivest) (1991, replacing md4)
e 128-bit mdb hashes, create checksum, almost uniquely
ID file
supposed to be unlikely to get collision
e Been broken, easy to defeat since 2007
o Birthday attack, while creating two files with same sum
hard, creating a huge number of files the likelyhood
of getting two to be the same is more likely than you

think

-y 14

o Chosen-prefix attack — in this case take two differing
start texts, by appending arbitrary data to each (in a
comment section in some formats like PDF) can find
match

-y 15

SHA-1

e Developed by NSA 1993

e 160-bits (40 hex digits)

e Deprecated by NIST since 2011

e SHAppening (2015)

e SHAttered (2017) first collision (pdf file)
e chosen-prefix attack 2019

e Used by git (oops)

16

SHA-2, SHA-3

e SHA-2 (Secure-Hash Algorithm 2)
o Designed by NSA, 2001
o 224, 256, 384 or 512 bits
o Merkle-Damgard construction
e SHA-3
o Keccak, Sponge Construction

o Different than others. Not meant to replace SHA-2 as
SHA-2 not broken yet

-y 17

Cryptographic Hash Uses

e passwords (/etc/shadow)

e (mostly) uniquely identifying a file (git),

e verifying file contents (download, error checking),
e bitcoin?

18

Proof of Concept GTFO

e One issue of hacker magazine had fun generating
collisions

e Distributed as PDF that included its own mdb5sum
(should that be hard?)

e Same PDF file was also a zip file and an NES ROM vyou
could run in an emulator, also showing the sum

/Y 19

Other Encryption Concerns

e Redundancy, some way to validate plaintext is valid.
Example: if encrypting a binary blob where each byte
indicates something (12 34 means order 34 cows or
something), random garbage might decode to valid
message

e Freshness — replay attacks. What if you record old
message (Bank deposits $100 to account) and replay.
Will have valid encryption.

Encryption Problems

e Keys leaked (DVD/game console issues)

e poor random numbers used (Debian problem)

e differential cryptanalysis (start with similar plaintexts
and see what patterns occur in output) [DES IBM/NSA
story]

e Power/Timing analysis — note power usage or
timing/cache/cycles when encryption going on, can leak
info on key or algorithm
Bane of perf

-y 21

e Quantum computers

22

Trusting Trust

e When setting up an encrypted connection, how do you
verity who is on the other side?

e How can you protect from man-in-the-middle attacks
(MitM) where someone intercepts them downloading
your public key, replaces with their own, then sits in the
middle decrypting/re-encrypting in a transparent way?

e Some companies/countries will actually do this quite
openly

-y 23

Key Signing Parties

e One way is to have get-togethers were friends sign each
others keys

e If enough people do this, you can create a “chain
of trust” where you can track someone’s identity to
someone you trust

e Linux kernel sorta tries this for git development

e Trouble for new people, or remote people, or people who
don’t travel much, or don't have many friends

-y 24

Self-signing Keys

e Can you just sign your own keys?

e You can, but how would someone know it's really you?

e (Though you could argue, does that always matter?)

e Most web browsers get very upset and will show lots of
warnings if you use a self-signed key

-y 25

Certificate Authorities

e Certificate authority — an official organization that
verifies identities

e Will sign a “certificate” saying who you say you are

e Operating Systems/Web-browsers will ship with a list of
officially trusted Certificate Authorities

e Can hover over the lock symbol in URL bar to verity
who signed for a website

e Hashed?

e Can be revoked

-y 26

SSL/TLS

e Secure Socket Layer / Transport Layer Security

e Handshake protocol followed by key exchange

e Browser says hello, which hashes/algorithms it supports

e Server picks one and sends back

e Server then sends a certificate (signed by authority)
saying who It is, and what its public key is

e Client verifies certificate (via the CA public key it has
stored)

e client generates a random number, encrypts with servers

-y o7

public key, sends to server, used as symmetric key

e What could go wrong, what if someone gets a hold of
server private key? could decrypt logged data.

e Could try Diffie-Hellman key exchange — random number
plus unique session key prevents problems if server private
key leaked

/Y 28

e Bot
e Bot
e Eac

e
N sid

N SIC

number.

Diffie-Hellman (used by ssh)

es agree on large prime number
es agree on algorithm (AES?)
e picks independently picks another secret prime

his Is not the authentication private key.

e The secret prime, AES, and shared prime are used to
make a public key derived from the private key.

e [he generated public key is shared

e [he other side uses their own private key, the other side

29

public key, and shared prime to figure out the shared
secret key.
e This secret key is then used for symmetric encryption.
e Example on p812

/Y 30

Encryption — Encrypting Hard Drives

e LUKS on Linux

e Bitlocker?

e This gets into the whole signed/trusted firmware on
modern machines

e Ransomware

-y 31

Encryption — Encrypting E-mail

e PGP — pretty good privacy
OpenPGP RFC 4880
Encrypt message with symmetric key, send along the key
encrypted via asymmetric
was illegal for a while (more than 40 bit encryption an
exportable munition)
people got RSA algorithm in perl tattoos

o GPG — free software replacement for PGP

e Can also PGP sign a message. Not encrypted, but signed

-y 3

with your key to verify it was in fact sent by you. Takes
hash of the input, then encrypts the hash with key. Also,
downloads from servers (like debian)

/Y 33

Encryption — Ethics

e Should everyone be allowed to encrypt things?
e Should governments be allowed backdoors to decrypt
things?

-y 34

