
ECE 435 – Network Engineering
Lecture 10

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

12:30pm, Barrows 125

15 February 2024

https://web.eece.maine.edu/~vweaver

Announcements

• HW#4 due Friday

• HW#5 will be posted

• Note, look up MP-TCP?

• HW#2 wrapup: mostly good. Note not really

checking for security, still issues (can someone request

../../../../etc/passwd?)

• Recent news: DNS-SEC vulnerability, carefully crafted

1

packet can lock up encryption code

2

From Last Time

• Described 1s complement wrong (said sign-magnitude

instead)

3

HW#5 Notes – Hexdumps

• Decoding a hexdump
hexdump -C ece435_lec08.pdf

00000000 25 50 44 46 2d 31 2e 35 0a 25 d0 d4 c5 d8 0a 39 |%PDF-1.5.%.....9|

00000010 20 30 20 6f 62 6a 0a 3c 3c 0a 2f 4c 65 6e 67 74 | 0 obj.<<./Lengt|

00000020 68 20 33 37 33 20 20 20 20 20 20 20 0a 2f 46 69 |h 373 ./Fi|

00000030 6c 74 65 72 20 2f 46 6c 61 74 65 44 65 63 6f 64 |lter /FlateDecod|

00000040 65 0a 3e 3e 0a 73 74 72 65 61 6d 0a 78 da 9d 52 |e.>>.stream.x..R|

• First column is offset into the file or packet (usually in

hex).

• The next set of columns are the raw bytes, in hex.

• The last column is the ASCII char equivalent of the raw

data. a ‘.’ often indicates non-printable ASCII.

4

HW#3 Review

• md5sum/encryption, seems to have gone well

• How to validate PGP key is indeed for who it says?

◦ https isn’t enough, what if the person who admins the

webserver is evil?

◦ Certificate Authority (costs money)

◦ Distributed Web of Trust (key signing party).

◦ Compare in person/phone, key fingerprint if not want

to send whole thing

◦ Can you trust phone/video calls anymore?

5

• Encrypted message went fine

• Why not use SHA-1 for git anymore? It’s been “broken”

which means possible to generate a collision

• Can you use virtual hosting with https? Problem is host

header isn’t received until after the SSL connection set

up.

• md5sum extra credit, even though it’s in theory broken

it’s not necessarily easy to generate colliding files

hashquines

6

Transmission Control Protocol (TCP)

• RFC 793 (from 1981) / 1122 / 1323

2018 / 2581 / 2873 / 2988 / 3105, summary in 4614

• Generally attributed to Vint Cerf and Bob Kahn

• Reliable, in-order delivery.

• Adapts to network congestion

• Takes data stream, breaks into pieces smaller than 64k

(usually 1460 to fit in Ethernet) and sends as IP

7

• No guarantees all packets will get there, so need to

retransmit if needed.

• Multiple connections can share same port (i.e. webserver

on port 80 can handle multiple simultaneous requests)

• Point-to-point (can’t multicast)

• Full duplex

• Byte stream, if program does 4 1024byte writes there’s

no guarantee the other end sees 4 chunks of 1024, only

4k stream of bytes is guaranteed.

8

TCP Header

Fixed 20-byte header. From RFC793:
0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Source Port | Destination Port |

+-+

| Sequence Number |

+-+

| Acknowledgment Number |

+-+

| Data | |C|E|U|A|P|R|S|F| |

| Offset|Reservd|W|C|R|C|S|S|Y|I| Window |

| | |R|E|G|K|H|T|N|N| |

+-+

| Checksum | Urgent Pointer |

+-+

| Options | Padding |

+-+

| data |

+-+

9

TCP Header Format

• 16-bit source port

• 16-bit dest port

• 32-bit sequence number

• 32-bit ack number

next byte expected, not last one received

10

TCP Header – Offset / Flags

• 4-bit data offset (header length) points to start of data.

NOTE: must multiply by 4. (minimum is 5 (20 bytes),

max 15 (60 bytes))

• 3-bit reserved zero (not used)

• NS / CWR / ECE – for ECN congestion

• ACK (acknowledge) – 1 if ack field valid, otherwise ack

field ignored

11

TCP Header – Flags (Continued)

• U (URGent) – urgent pointer points to urgent byte

◦ URGENT flag can be sent that says to transmit

everything and send a signal on the other side that

things are urgent.

◦ 16-bit urgent pointer

• PSH – receiver should process the data immediately and

not buffer it waiting for more to come in

◦ PUSH flag can be sent that says not to buffer (For

example, if interactive command line)

12

TCP Header – Flags (Continued)

• RST (reset) – reset a connection because something has

gone wrong

• SYN (synchronize) – used to establish connection

CONNECTION REQUEST (SYN=1,ACK=0) and

CONNECTION ACCEPTED (SYN=1,ACK=1)

• FIN – used to release a connection

13

TCP Header continued – Window

• 16-bit window size

• We’ll discuss this more later

• Only in ACK, says how many bytes to send back.

• This can be 0, which means I received everything but I

am busy and can’t take any more right now (can send

another ACK with same number and nonzero window to

restart)

14

TCP Header continued – Checksum

• 16-bit ones’ complement checksum

• Same calculation as UDP

• As with UDP also add in pseudo header

15

TCP Header – Options

• options (32-bit words) – we’ll discuss these later

• type=0 End of option

End of all options. Only one allowed (not always

needed?)

• type=1 No operation (for padding to 32-bit boundary)

• type=2, Len=4, Value=16-bits Maximum Segment

Size

only in initial SYN packet

• type=3, Len=3, Value=8-bits Window size

16

Scaling factor to shift window size by (0..14), raising

limit to 1GB. Only set during handshake

• type=4, len=2 Selective ACK permitted

• type=5, len=? Selective ACK

list of 1-4 blocks being selectively acknowledged, as 32-

bit begin/end pointers

allows only resending missing packets instead of having

to restart at last ACK (RFC1106?)

• type=8, len=10 Timestamp and echo of last timestamp

Not necessarily current time. (RFC1323) PAWS,

Protection against Wrapped Sequence-number

17

High bandwidth, seq num can wrap. Use timestamps to

recognize when this happens.

Fast connections sequence can wrap quickly (orig

internet 56k, modern 1Gb connection wrap in seconds

rather than weeks)

18

TCP Opening Connection
Sender Receiver

SYN SEQ=X

SYN=1 ACK=0

SEQ=Y, ACK=X+1

SEQ=X+1, ACK=Y+1

Client Server

SYN=1,ACK=1

SYN=0,ACK=1

• Three-way handshake (Tomlinson 1975)

◦ Server does LISTEN/ACCEPT to wait for connection.

◦ Client issues CONNECT: destination/port/size, etc.

◦ CONNECT chooses random initial sequence number

(ISN) X

19

Sends SYN(SEQ=X) (SYN=1 ACK=0) with port and

sequence number

◦ Server receives packet. Checks if listening on that

port; if not send back a packet with RST to reject.

◦ Otherwise it can accept

sends back ACK(X+1) plus SYN(SEQ=Y) with

random sequence# of own

◦ Client then responds with the server SYN ACK(Y+1)

SEQ=x+1

◦ Connection is established

• SYN number picked, not to be 0. Originally clock based

20

(random these days?). If machine reboots should wait

for maximum lifetime to make sure all close

• Why do this? What happens with simultaneous

connection? What if attacker can easily guess your

sequence number?

21

TCP Closing Connection

• TODO: diagram

• Closing connection

• Although full duplex, almost like two independent one-

way connections, released independently

◦ one side sends packet with FIN

◦ other side sends ACK of FIN, that direction is shut

down

◦ other direction can keep sending data though

◦ at some point other side sends FIN

22

◦ this is ACKed

◦ Two army problem?

Two generals on opposite side trying to co-ordinate

attack. Any message can be intercepted by enemy. So

say “attack at 9pm” but that could be lost. Could

require other side to send reply, but that could be

lost. You need infinite messages to guarantee it got

through.

If FIN not ACKed within two packet lifetimes, will

close anyway. The other side eventually notices and

closes too.

23

TCP State Machine

• 11 possible states

◦ starts in CLOSED

◦ LISTEN – waiting for a connection

◦ SYN-SENT – started open, waiting for a returning

SYN

◦ SYN-RECEIVED – waiting for ACK

◦ ESTABLISHED – open, two-way communication can

happen

◦ FIN-WAIT-1 – application has said it’s finished

24

◦ FIN-WAIT-2 – the other side agreed to release

◦ CLOSE-WAIT – waiting for a termination request

◦ CLOSING – waiting for an ACK of closing request

both sides closed at once

◦ LAST-ACK – waiting for ACK from last closing

◦ TIME-WAIT – waiting to transition to CLOSED long

enough to ensure other side gets last ACK

• large state diagram

25

TCP State Machine – Aside

• On linux you can use tools like netstat (obsolete) or

ss to show what state all the sockets in the system are

in

26

Typical Connection seen by Client

• CLOSED

user does connect(), SYN sent (step 1 of handshake)

• SYN-SENT

waits for SYN+ACK, sends ACK (step 3 of handshake)

• ESTABLISHED

sends/receives packets

eventually user will close() and send FIN

• FIN-WAIT-1

FIN sent, waiting for ACK

27

• FIN-WAIT-2

one direction closed

received ACK of FIN, wait for FIN from other side,

respond with ACK

• TIME-WAIT

wait until timeout to ensure all packets done in case

ACK got lost

• CLOSED

28

Typical Connection seen by Server

• CLOSED

waits for listen()

• LISTEN

gets SYN, sends SYN+ACK (step 2 of handshake)

• SYN-RECVD

waits for ACK

• ESTABLISHED

sends/receives

FIN comes in from client, sends ACK

29

• CLOSE-WAIT

, closes itself, sends FIN

• LAST-ACK

gets ACK

• CLOSED

30

TCP Reliability

• Per-segment error control

◦ checksum (algo same as UDP)

◦ also covers some fields in IP header to make sure at

right place

◦ TCP checksum is mandatory

◦ Checksum is fairly weak compared to crc32 in Ethernet

• Per-flow reliability

◦ What to do in face of lost packets? Need to notice

and retransmit and handle out-of-order

31

◦ Sequence number generated for first blob (octet?),

32-bit number in header

◦ Sender tracks sequence of what has been sent, waiting

for ACK

◦ On getting segment, receiver replies with ACK with

number indicating the expected next sequence number,

and how much has been received. ”All data preceding

X has been received, next expected sequence number

is Y. Send more”

◦ Selective ACK – has received segment indicated by

ACK

32

◦ Cumulative ACK – all previous data previous to the

ACK has been received

33

Ways to Notice Transmission Problems

• Checksum

• Acknowledgement

• Time-out

34

For Comparison: Good Transaction
Sender Receiver

SEQ=100, Len=50

ACK = 150

SEQ=150, LEN=40

ACK=190

• You don’t have to wait for ACK before sending more

• ACKs can be piggybacked on packets going other

direction

35

Error: Corrupted or Lost Packet

Sender Receiver

SEQ=100, Len=50

SEQ=150, LEN=40

ACK = 100

SEQ=100, Len=50

ACK = 100

SEQ=190, LEN=50

ACK = 100

ACK=240

resend

• Packet never made it

• Can’t ACK next packet due to missing data, so re-sends

previous ACK (ACK=100)

• After three duplicate ACKs, sender retransmits

36

Error: Delay or Duplicate Packet
Sender Receiver

Timeout

SEQ=100, Len=50

ACK = 150

SEQ=100, Len=50

• Duplicate packet (How? On sender timeout happens if

ACK not received in reasonable time, so resends)

• Two identical packets arrive at receiver

• TCP discards packets with duplicate SEQ (any security

issues with that?)

37

Error: Out-of-order Packet
Sender Receiver

SEQ=100, Len=50

SEQ=150, LEN=40

ACK = 100

ACK=190
SEQ=100, Len=50

• Out-of-order packet

• Do not ACK packet until preceding ones make it

• For performance can queue up out of order ones so they

don’t have to be resent

38

Error: Lost ACK
Sender Receiver

SEQ=100, Len=50

ACK=190

ACK = 150

SEQ=150, LEN=40

• ACKs cumulative, so if the next packet causes an ACK

then it doesn’t matter. Otherwise a timeout?

39

TCP Timers

• Timers can catch when things go missing/go wrong

• What should the timer value be?

◦ Too short, send extra packets,

◦ Too long and takes long time to notice lost packets.

• On the fly measures round trip time. (RTT) When

send segment, start timer, updates. Various algorithms.

Often 2 or 4x

40

TCP Timers

• Connection Timer – after send SYN if no response in

time, reset

• Retransmission Timer – retransmit data if no ACK

• Delayed ACK timer – can usually wait for outgoing data

and can tag an ACK along for free. If it’s been too long

and no data is being sent, timer expires and have to

send stanadlone ACK

• Persist Timer – solve deadlock where window was 0, so

waiting, and missed the update that said window was

41

open again.

Sends special probe packet. Keep trying every 60s?

• Keepalive Timer – if connection idle for a long time,

sends probe to make sure still up

• FIN WAIT 2 Timer – avoid waiting in this state forever

if other side crashes

• TIME WAIT TIMER – used in TIME WAIT to give

other side time to finish before CLOSE

42

