
ECE 435 – Network Engineering
Lecture 14

Vince Weaver

https://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

12:30pm, Barrows 127

29 February 2024

https://web.eece.maine.edu/~vweaver

Announcements

• HW#6 due Friday

• Will try to grade HW#5 and HW#6 before midterm

• HW#7 will be posted

• In 2021 Pentagon activated some of its vast IPv4

collection turns out had been unused people using

them as unroutable numbers, including China military.

https://www.theregister.com/2021/04/26/defense_department_ipv6/

• Office hours cancelled Monday due to faculty interview

schedule

1

https://www.theregister.com/2021/04/26/defense_department_ipv6/

Midterm Preview

• Can have one page (8.5” x 11”) of notes if you want,

otherwise closed everything. I do not think you should

need a calculator.

• Mostly short answer questions. No long coding exercises

or protocol memorization.

• There might be some sockets code, but analyzing it not

writing it.

2

Midterm Preview – Topics

• Know the OSI layers and what each one is for.

• Be aware of socket programming in C, and what the

common syscalls do (bind(), listen(), accept(), read(),

write(), etc.)

• Know at a high level the following protocols:

◦ WWW/http

◦ e-mail

◦ DNS

• Encryption (at a high level)

3

• UDP + TCP

◦ Know the 3-way handshake

◦ Know the tradeoffs between UDP and TCP

◦ Why does DNS use UDP

◦ Why does HTTP1.1 use TCP

4

Brief HW#5 Review

• source/destination/size/checksum

◦ src: a9a0 = 43424 (note, hex dumps are naturally big

endian)

◦ dest: 35 = 53 (DNS)

◦ size: 2a = 42 bytes

◦ yes checksum

◦ protocol is DNS (how can you tell?)

• Why use UDP vs TCP

lower latency, lower overhead (no need to handshake),

5

simpler

Be careful just saying “faster”, need to explain more

what you mean by that.

6

HW#5 Coding Notes

• Remember to comment your code!

• Getting source port from incoming connection

• Note this is not the IP address

• Getting it from the struct is sort of hard

• Also remember it’s in network endian, need to convert

with ntohs() In general would be an ephemeral port

above 40000

7

The IPv4 Catastrophe

8

Out of IPv4 Addresses Problem

• IPv4 address exhaustion

• CIDR not enough

• Addresses managed by IANA globally and five regional

registrars (RIR)

• Top level ran out in 2011

• All 5 RIRs finally ran out on Nov 25th, 2019

9

Why are we out?

• Always active connections – unlike dialup, many machine

are on all the time

• So many devices – 4G mobile devices all have one

• Inefficiencies originally handing out. Companies like

Apple, MIT, DEC, all got 16 million address Class A

addresses even if didn’t need them

(Stanford gave back a class A in 2000)

• Despite being out, in 2011 reportedly only 14% of

addresses being used

10

• Why not reclaim unused, such as Class E? The bane of

network programmers, the out-of-date router that makes

assumptions

11

Ways to mitigate lack of addresses

• Add extra bits for addresses in ipv4 in a backward

compatible way (this was generally determined to not be

practical)

• Replace ipv4 with new protocol

• Have private subnetworks live behind a gateway that

only requires one IPv4 address

12

Network Address Translation (NAT)

• Private IP ranges, defined in RFC 1918

◦ 1 Class A: 10.0.0.0 - 10.255.255.255 (10.0.0.0/8)

◦ 16 Class B: 172.16.0.0 - 172.31.255.255 (172.16.0.0/12)

◦ 256 Class C: 192.168.0.0 - 192.168.255.255 (192.168.0.0/16)

• Can use for various reasons, most recently due to network

depletion

• NAT: map IP addresses from one group to another.

often public to private.

• NAT and NAPT (port translation) RFC 3022

13

• Basic NAT has one to one mapping of external to internal

IPs. Each internal host maps to unique external IP

14

NAT Example

192.168.8.5

192.168.8.4

192.168.8.3

192.168.8.2

NAT

123.45.67.89

outgoing connection to 8.8.8.8 port 53

source is 192.168.8.5 port 40000

NAT remaps to 123.45.67.89 port 60000

incoming data to 123.45.67.89 60000 remapped

back to 192.168.8.5 port 40000

15

Network Address Port Translation (NAPT)

• NAPT: based on port, only one external IP

◦ Full cone – most common

once an internal address (iaddr/port) has been mapped

to an external (eaddr/port) all packets from iaddr/port

are sent out and any incoming are passed through with

no additional checks

◦ Restricted cone – same as above, but only external that

have received packets from internal can send through

◦ Port restricted cone – same as above, but also checks

16

port numbers

◦ Symmetric – best security – outgoing packets mapped

to different eaddr/port if the destination or port differs

17

NAT Implementation

• When passing through, NAT needs to re-write

dest/source/port and recompute header checksum

• Linux: IP-masquerade/iptables

18

Many IP people hate NAT

• Violates the IP identifies one machine rule

• Hard to connect two machines if both behind different

NATs (NAT transversal)

• Changes IP to be connection oriented, router has to

remember connections

• Layering violation, looks at TCP/UDP port numbers

• Only works for TCP/UDP

• Some protocols (like FTP) are even more annoying, send

address in plain text in data and that has to be adjusted

19

too

• Can only NAT up to 64k machines (why? how many

ports are there?)

20

Carrier Grade NAT (CGN, CGNAT, LSN)

• Internal network uses private IP range

• Public facing server channels these through a set of

external IP addresses

• NAT444 – potentially traverse 4 different IP (private in

home, private in ISP, external IP)

• RFC6598 – allocate 100.64.0.0/10 for this, to avoid

complications where internal/external collisions of the

RFC1918 ranges

21

CGNAT Downsides

• Breaks end-to-end connections

• Stateful

• Doesn’t fully solve IPv4 exhaustion problem cases where

need a visible IP address (SSL web server?)

• Lots of devices behind a few IPs, what if get banned for

spamming/security?

• Breaks port-forwarding for users, as you’re in a NAT

inside a NAT (port control protocol (PCP) RFC 6887

tries to work around this)

22

The Internet Protocol v6

• RFC2460 - RFCC466

• Started work in 1991

• Many problems with IPv4. Most notable shortage of

addresses.

• IPng. (IPv5 was an experimental stream protocol)

• Migration happening, a large amount of web traffic,

especially that from phones, is already switched.

• *not* backwards compatible

23

IPv6 uptake

• As of July 2016 12.5% of traffic is IPv6

• According to Google connecting to network

https://www.google.com/intl/en/ipv6/statistics.html

◦ March 2022: 34%

◦ March 2023: 38%

◦ March 2024: 43%

• This worldwide, some countries higher (US 48%,

India/France 75%)

24

https://www.google.com/intl/en/ipv6/statistics.html

The Internet Protocol v6 Goals

• Support billions of hosts

• Reduce size of routing tables

• Simplify the protocol (so routers can be faster)

• Better security

• Pay more attention to type of service

• Aid multicasting

• Allow roaming w/o changing address

• Co-exist with existing protocols

25

The Internet Protocol v6 features

• Address size 128 bits

a lot of addresses. 7× 1023 for ever square meter

• Simpler fixed length header (speeds up processing)

Many fields not really used in IPv4 dropped (or made

optional)

• Better support for options

• Better security support

IPSEC. Originally mandatory, made optional

Can encrypt packets at the network layer

26

• Quality of service (???)

• Anycast (see end of slides)

• Autoconfiguration (like DHCP)

• Minimum fragment size 1280 (up from 576)

• No checksum – was slow and recalculated often

27

IPv6 header

• Header fixed length of 40 bytes, with Extension headers
• ASCII art from RFC 2460

+-+

|Version| Traffic Class | Flow Label |

+-+

| Payload Length | Next Header | Hop Limit |

+-+

| |

+ +

| |

+ Source Address +

| |

+ +

| |

+-+

| |

+ +

| |

28

+ Destination Address +

| |

+ +

| |

+-+

• Version Number (1 nibble [4-bits]) = 6

• Differential Services/Traffic Class (8-bits) (QoS/congestion)
6-bit differential services, 2 bits ECN (sort of like recent

IPv4?)

• Flow label (20-bits) (for streaming?) (Recently for

ECMP (Equal Cost Multipath) Line sharing. Sending

packets different router paths can be bad with TCP as

packets more likely to arrive late/out-of-order. Instead

29

send all packets with same flow label same path, but

balance different paths)

• Payload Length (16-bits) 64k (header bytes not counted

anymore) (if you want longer, extension for Jumbograms

(up to 4GB))

• Next header (8-bits) If nothing special identifies TCP

or UDP If special options (fragmentation, security)

indicated

(TCP=0x6, UDP=0x11)

• Hop Limit (8-bits) TTL, big debate about whether

8-bits was enough

30

• Source Address (128-bits)

• Destination Address (128-bits)

• Why not 64-bit addresses?

• No checksum, link or transport catches issues

What does this mean for UDP?

31

IPv6 addresses

• 2128 is a lot. 7x1023 per m2 of Earth surface

• Too long for dotted decimal, use colon hexadecimal

• Why colons? .BE is a valid domain ending for one...

• X:X:X:X:X:X:X:X where X is 16 bit chunk

• F000:0123:5678:0000:0000:ABCD:0001:CAFE

• Can drop leading zeros, as well as groups of zeros

F000:123:5678::ABCD:1:CAFE

Note, cannot drop two sets of groups of zeros. Why?

Ambiguous.

32

IPv6 reserved addresses

• ::1 ip6-localhost, fe00::0 ip6-localnet

• fe80:: link-local?

• 2001:: special? reserved?

• 2002:: 6to4 (deprecated)

• 64:: more 6to4 (?)

• ff00:: multicast

33

IPv6 Options

• Happen immediately after the header.

• Should occur in numerical order (though routers might

be able to handle if they don’t)

• Routers should inspect in order as some later might

depend on earlier.

• Plain: IPV6:Next=TCP, TCP, Data

• Example: IPV6:Next=Routing, Routing:Next=TCP,

TCP, Data

• Various types

34

◦ Hop-by-hop (so far only used for jumbo frames, if that

set header length is set to 0)

◦ Source Routing

◦ Fragmentation

◦ Authentication

◦ Encryption

35

IPv6 fragmentation

• Info is in an extension header

• Routers cannot fragment, only at source

• How can this work when not know MTU?

• MTU is always greater than 1280

• Path MTU discovery protocol to discover MTU along

the way (RFC 1981). (IPv4 too, set DNF and get error

via ICMP) If too big, sends an error back and source

needs to fragment it smaller

• Easier to have source fix things then every router along

36

the way being able to

37

IPv6/IPv4 compat

• Dual stack – host runs both IPv4 and IPv6

or internal is IPv6 but router converts to IPv4 before

passing on

• Tunneling – encapsulate IPv6 inside of IPv4, tunnels

across IPv4, split back out to IPv6 on other side of

tunnel

• IPv4 mapped to IPv6 with special 96-bit prefix

there are specs for this, not sure if really implemented

38

IPv6 Routing

• Much like IPv4

• IPv6 network address, “prefix-length” instead of netmask

• Routing table as before

39

ICMP6

+-+-+-+-+-+-+-+-.-+-+-+-+-+-+-+-.-+-+-+-+-+-+-+-.-+-+-+-+-+-+-+-+

| Type | Code | Checksum |

+-+

| Data |

+-+

• Checksum: similar to TCP, also includes pseudo-header

• Type 0, Destination Uncertain

◦ Various

• Type 1, Packet too big

• Time Exceeded

• Bad Parameters

40

• ECHO / ECHO Reply

• Neighbor Discovery Protocol (NDP)

• SEND – Secure Neighbor Discovery Protocol

• Multicast Listener Discovery (MLD)

41

IPv6 Anycast / Multicast

• We’ll talk about this later when we talk about broadcast

42

How do you get an IPv6 address?

• Manual (hard-coded)

• DHCPv6

• SLAAC

43

IPv6 Stateless Address Auto-Config
(SLAAC)

• IPv6 StateLess Address AutoConfiguration (SLAAC)

assumes on /64 subnet (so every subnet contains orders

of magnitude more than the total IPv4 space for their

own local network)

• Essentially large enough a system could just pick a

random address and it would work

44

SLAAC Methods

• Three ways:

◦ EUI-64 (RFC 4291) – based on MAC address

◦ Stable Private (RFC 7217) – hash based, don’t give

away MAC

◦ Privacy Extension Addresses (RFC 4941) – like above

but change over time to preserve anonymity

For security refresh daily, this does happen on

MacOS/Windows, but not necessarily on Linux

45

EUI-64

• Linux seems to do this to set up link-local addresses

• Link-local, non-routable address on fe80::/10

• Take MAC address (i.e. 8c:dc:d4:24:7d:45)

• Split up, put fffe in middle, flip bit 7 of top byte

◦ 8c:dc:d4:24:7d:45

◦ fe80::8edc:d4ff:fe24:7d45

• Can see these addresses with ip addr

• ping6 can ping them on local network

• To ssh you have to do specify interface, something like:

46

ssh fe80::8edc:d4ff:fe24:7d45%eth0

47

Duplicate Address Discovery (DAD)

• Once has link-local address, joins special multicast

address

• ff02::1:ffXX:XXXX where last 6 bytes are bottom half

of IP address it picks

• Sends packet to see it anyone else has address

• ip maddr show will show in-use multicast addresses

48

IPv6 Neighbor Discovery

• Neighbor Solicitation (NS) (RFC 4861) use with SLAAC

described in RFC 4862 to get address

• Once has address, does DAD

• Once has link local address, sends out Router solicitation

(RS) to multicast address ff02::2

• Router replies with (RA) router advertisement packet

with info on router, maybe DNS, etc

• Now needs to get global routable address prefix to use,

either directly or has bits set to indicate it should use

49

DHCPv6

50

IPv6 DHCPv6

• Can provide info just like IPv4

• Not just router info, but also things like DNS servers,

etc

51

IPv6 Setup

• I’ve set up many many IPv4 networks, not any IPv6

• https://lwn.net/Articles/831854/

Article by James Bottomley

• With IPv4, DHCP can take care of everything

52

https://lwn.net/Articles/831854/

IPv6 setup issues

• It can be hard to subnet.

• It’s recommended an ISP gives you a /56 but often they

will just give you a /64

• That’s a lot of addresses, but due to SLAAC it’s assumed

a network has a minimum of 264 addresses so you can’t

split it up easily

• Annoying if you want multiple subnets at home (for

wireless, DMZ, etc)

• Setting up Firewall. Linux has separate ipv4 and ipv6

53

firewalls

• Having a NAT set up sort of gives you a firewall for free,

you don’t necessarily get that with IPv6

54

IPv6 Security Issues

• Shadow Networks – if you have a primarily ipv4 setup

but various devices start up IPv6 connections without

you realizing it

• Fragmentation – even though only on ends, can still have

issues like IPv4 where it’s hard to handle fragments as

TCP port info and such only in first fragment

55

Modern IPv6 vs NAT Concerns

• Performance, NAT takes extra processing. Can small

routers keep up at 1Gbps?

• Security, implicit security in NAT (internal devices not

visible at all unless open outgoing connection). Can

configure a firewall for ipv6 but requires extra work

Also to get similar NAT-like behavior (blocked by default

unless outgoing connection) maybe difficult

• Generally ipv6 not used by as many so dependent on

your ISP not breaking things and not noticing

56

IPv4 / IPv6 Interop

• IPv6 NAT? What would that even mean?

• Can you have an internal network that’s IPv4 connected

to an external IPv6 network?

• Can you have an internal network that’s IPv6 connected

to an external IPv4 network?

◦ Dual stack. Run both IPv4 and IPv6. Can fall back

if one doesn’t work. Need to configure two parallel

network infrastructures.

◦ Stateless IP/ICMP Translation

57

Internally fully IPv6, but each server has equivalent

IPv4 on outside and the router converts them

◦ Tunneling, IPv6, tunnel/encapsulate inside of IPv4,

then return to IPv6

◦ NAT64 – IPv6 internally, but has single external IPv4

gateway and does NAT/conversion to inside

◦ 464XLAT – nat64 at network level, SIIT internal

Used in carrier-grade type situations, PLAT/CLAT

58

IPv6 Socket Programming
struct sockaddr_in6 server_addr;

sock_fd = socket(AF_INET6 , SOCK_STREAM , IPPROTO_TCP);

server_addr.sin6_family = AF_INET6;

inet_pton(AF_INET6 , "::1", &server_addr.sin6_addr);

server_addr.sin6_port = htons(SERVER_PORT);

59

