
ECE 471 – Embedded Systems
Lecture 5

Vince Weaver

http://www.eece.maine.edu/∼vweaver
vincent.weaver@maine.edu

16 September 2014

Announcements

• HW#2 is due Thursday

◦ People using BeagleBoneBlack

◦ Comment your code!

◦ I’m adopting Prof. Zhu’s “Something Cool” part of

the homeworks. If you want to do “something cool”

beyond what I list as suggetions, let me know so I can

clear it first.

1

Homework Review

• Follow directions! E-mail title, spell name wrong

• embedded, resource constrained, real-time, dedicated

purpose, GUI interface?

• Be strong in your convictions!

• Make sure realize difference between the embedded

system (the whole device) and the processor (SoC or

microcontroller)

2

• Phone has real time constraints? Know I didn’t explain

real-time well, later. Can meet deadlines. Yes, but on

which processor?

• Thermostat on grid power? Not necessarily. Mine AAA

batteries.

• iPhone – most said was *not* embedded system

• thermostat – all said was embedded system

• ARM1176JZF-S: Java, TrustZone, Vector Floating,

Synthesizable

3

ARM Architecture

• 32-bit

• Load/Store

• Can be Big-Endian or Little-Endian (usually little)

• Fixed instruction width (32-bit, 16-bit THUMB)

(Thumb2 is variable)

• arm32 opcodes typically take three arguments

(Destination, Source, Source)

4

• Cannot access unaligned memory (optional newer chips)

• Status flag (many instructions can optionally set)

• Conditional execution

• Complicated addressing modes

• Many features optional (FPU [except in newer], PMU,

Vector instructions, Java instructions, etc.)

5

Registers

• Has 16 GP registers (more available in supervisor mode)

• r0 - r12 are general purpose

• r11 is sometimes the frame pointer (fp)

iOS uses r7 as the frame pointer

• r13 is stack pointer (sp)

• r14 is link register (lr)

6

• r15 is program counter (pc) (reading r15 usually gives

PC+8)

• 1 status register (more in system mode).

NZCVQ (Negative, Zero, Carry, oVerflow, Saturate)

7

Floating Point

vector floating point vfp3– 32 or 16 64-bit registers

Advanced SIMD – reuses vfp registers + Can see as

16 128-bit regs q0-q15 or 32 64-bit d0-d31 and 32 32-bit

s0-s31 SIMD supports integer, also 16-bit? Polynomial?

FPSCR register (flags)

8

Arithmetic Instructions

Most of these take optional s to set status flag

adc v1 add with carry
add v1 add
rsb v1 reverse subtract (immediate - rX)
rsc v1 reverse subtract with carry
sbc v1 subtract with carry
sub v1 subtract

9

Register Manipulation

mov, movs v1 move register
mvn, mvns v1 move inverted

10

Loading Constants

• In general you can get a 12-bit immediate which is 8

bits of unsigned and 4-bits of even rotate (rotate by

2*value). mov r0, #45

• You can specify you want the assembler to try to make

the immediate for you: ldr r0,=0xff

ldr r0,=label

If it can’t make the immediate value, it will store in

nearby in a literal pool and do a memory read.

11

Extra Shift in ALU instructions

If second source is a register, can optionally shift:

• LSL – Logical shift left

• LSR – Logical shift right

• ASR – Arithmetic shift right

• ROR – Rotate Right (last bit into carry)

• RRX – Rotate Right with Extend

bit zero into C, C into bit 31 (33-bit rotate)

12

• Why no ASL?

• For example:

add r1, r2, r3, lsr #4

r1 = r2 + (r3>>4)

• Another example (what does this do):

add r1, r2, r2, lsl #2

13

Shift Instructions

Implemented via mov with shift on arm32.

asr arith shift right
lsl logical shift left
lsr logical shift right
ror rors – rotate right
rorx rotate right extend: bit 0 into C, C into bit 31

14

Rotate instructions

• Looked in my code, as well as in Hacker’s Delight

• Often used when reversing bits (say, for endian

conversion)

• Often used because shift instructions typically don’t go

through the carry glad, but rotates often do

• Used on x86 to use a 32-bit register as two 16-bit

registers (can quickly swap top and bottom)

15

Shift Example

• Shift example (what does this do):

add r1, r2, r2, lsl #2

• teq vs cmp – teq in general doesn’t change carry flag

• Constant is only 8-bits unsigned, with 4 bits of even

rotate

16

Logic Instructions

and v1 bitwise and
bfc ?? bitfield clear, clear bits in reg
bfi ?? bitfield insert
bic v1 bitfield clear: and with negated value
clz v7 count leading zeros
eor v1 exclusive or (name shows 6502 heritage)
orn v6 or not
orr v1 bitwise or

17

Comparison Instructions

Updates status flag, no need for s

cmp v1 compare (subtract but discard result)
cmn v1 compare negative (add)
teq v1 tests if two values equal (xor) (preserves carry)
tst v1 test (and)

18

Multiply Instructions

Fast multipliers are optional

For 64-bit results,

mla v2 multiply two registers, add in a third (4 arguments)
mul v2 multiply two registers, only least sig 32bit saved

smlal v3M 32x32+64 = 64-bit (result and add source, reg pair rdhi,rdlo)
smull v3M 32x32 = 64-bit
umlal v3M unsigned 32x32+64 = 64-bit
umull v3M unsigned 32x32=64-bit

19

Control-Flow Instructions

Can use all of the condition code prefixes.

Branch to a label, which is +/- 32MB from PC

b v1 branch
bl v1 branch and link (return value stored in lr)
bx v4t branch to offset or reg, possible THUMB switch
blx v5 branch and link to register, with possible THUMB switch

mov pc,lr v1 return from a link

20

Load/Store Instructions

ldr v1 load register
ldrb v1 load register byte
ldrd v5 load double, into consecutive registers (Rd even)
ldrh v1 load register halfword, zero extends
ldrsb v1 load register signed byte, sign-extends
ldrsh v1 load register halfword, sign-extends
str v1 store register

strb v1 store byte
strd v5 store double
strh v1 store halfword

21

Addressing Modes

• ldrb r1, [r2] @ register

• ldrb r1, [r2,#20] @ register/offset

• ldrb r1, [r2,+r3] @ register + register

• ldrb r1, [r2,-r3] @ register - register

• ldrb r1, [r2,r3, LSL #2] @ register +/- register,

shift

22

• ldrb r1, [r2, #20]! @ pre-index. Load from r2+20

then write back

• ldrb r1, [r2, r3]! @ pre-index. register

• ldrb r1, [r2, r3, LSL #4]! @ pre-index. shift

• ldrb r1, [r2],#+1 @ post-index. load, then add value

to r2

• ldrb r1, [r2],r3 @ post-index register

• ldrb r1, [r2],r3, LSL #4 @ post-index shift

23

Load/Store multiple (stack?)

In general, no interrupt during instruction so long

instruction can be bad in embedded

Some of these have been deprecated on newer processors

• ldm – load multiple memory locations into consecutive

registers

• stm – store multiple, can be used like a PUSH instruction

• push and pop are thumb equivelent

24

Can have address mode and ! (update source):

• IA – increment after (start at Rn)

• IB – increment before (start at Rn+4)

• DA – decrement after

• DB – decrement before

Can have empty/full. Full means SP points to a used

location, Empty means it is empty:

• FA – Full ascending

25

• FD – Full descending

• EA – Empty ascending

• ED – Empty descending

Recent machines use the ”ARM-Thumb Proc Call

Standard” which says a stack is Full/Descending, so use

LDMFD/STMFD.

What does stm SP!, {r0,lr} then ldm SP!,

{r0,PC,pc} do?

26

System Instructions

• svc, swi – software interrupt

takes immediate, but ignored.

• mrs, msr – copy to/from status register. use to clear

interrupts? Can only set flags from userspace

• cdp – perform coprocessor operation

• mrc, mcr – move data to/from coprocessor

• ldc, stc – load/store to coprocessor from memory

27

Co-processor 15 is the system control coprocessor and is

used to configure the processor. Co-processor 14 is the

debugger 11 is double-precision floating point 10 is single-

precision fp as well as VFP/SIMD control 0-7 vendor

specific

28

Other Instructions

• swp – atomic swap value between register and memory

(deprecated armv7)

• ldrex/strex – atomic load/store (armv6)

• wfe/sev – armv7 low-power spinlocks

• pli/pld – preload instructions/data

• dmb/dsb – memory barriers

29

Pseudo-Instructions

adr add immediate to PC, store address in reg
nop no-operation

30

Prefixed instructions

Most instructions can be prefixed with condition codes:

EQ, NE (equal) Z==1/Z==0
MI, PL (minus/plus) N==1/N==0
HI, LS (unsigned higher/lower) C==1&Z==0/C==0|Z==1
GE, LT (greaterequal/lessthan) N==V/N!=V
GT, LE (greaterthan, lessthan) N==V&Z==0/N!=V|Z==1

CS,HS, CC,LO (carry set,higher or same/clear) C==1,C==0
VS, VC (overflow set / clear) V==1,V==0

AL (always) (this is the default)

31

Setting Flags

• add r1,r2,r3

• adds r1,r2,r3 – set condition flag

• addeqs r1,r2,r3 – set condition flag and prefix

compiler and disassembler like addseq, GNU as doesn’t?

32

Conditional Execution

if (x == 1)

a+=2;

else

b-=2;

cmp r1, #5

addeq r2,r2,#2

subne r3,r3,#2

33

Fancy ARMv6

• mla – multiply/accumulate (armv6)

• mls – multiply and subtract

• pkh – pack halfword (armv6)

• qadd, qsub, etc. – saturating add/sub (armv6)

• rbit – reverse bit order (armv6)

• rbyte – reverse byte order (armv6)

34

• rev16, revsh – reverse halfwords (armv6)

• sadd16 – do two 16-bit signed adds (armv6)

• sadd8 – do 4 8-bit signed adds (armv6)

• sasx – (armv6)

• sbfx – signed bit field extract (armv6)

• sdiv – signed divide (only armv7-R)

• udiv – unsigned divide (armv7-R only)

35

• sel – select bytes based on flag (armv6)

• sm* – signed multiply/accumulate

• setend – set endianess (armv6)

• sxtb – sign extend byte (armv6)

• tbb – table branch byte, jump table (armv6)

• teq – test equivalence (armv6)

• u* – unsigned partial word instructions

36

