
ECE 471 – Embedded Systems
Lecture 6

Vince Weaver

http://www.eece.maine.edu/∼vweaver
vincent.weaver@maine.edu

18 September 2014

Announcements

• I have a cold and my voice is gone!

• HW#3 will be posted tomorrow

1

ARM Instruction Set Encodings

• ARM – 32 bit encoding

• THUMB – 16 bit encoding

• THUMB-2 – THUMB extended with 32-bit instructions

◦ STM32L only has THUMB2

◦ Raspberry PI does not have THUMB2

• THUMB-EE – some extensions for running in JIT

runtime

• AARCH64 – 64 bit. Relatively new.

2

Recall the ARM32 encoding

ADD{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RmRd

RnS0 0 0cond Opcode

imm5
Shift

typ
Shift Sh

Reg

0 1 0 0

3

THUMB

• Most instructions length 16-bit (a few 32-bit)

• Only r0-r7 accessible normally

add, cmp, mov can access high regs

• Some operands (sp, lr, pc) implicit

Can’t always update sp or pc anymore.

• No prefix/conditional execution

• Only two arguments to opcodes

(some exceptions for small constants: add r0,r1,#1)

• 8-bit constants rather than 12-bit

4

• Limited addressing modes: [rn,rm], [rn,#imm],

[pc|sp,#imm]

• No shift parameter ALU instructions

• Makes assumptions about “S” setting flags

(gas doesn’t let you superfluously set it, causing problems

if you naively move code to THUMB-2)

• new push/pop instructions (subset of ldm/stm), neg (to

negate), asr,lsl,lsr,ror, bic (logic bit clear)

5

THUMB/ARM interworking

• See print string armthumb.s

• BX/BLX instruction to switch mode.

If target is a label, always switchmode

If target is a register, low bit of 1 means THUMB, 0

means ARM

• Can also switch modes with ldrm, ldm, or pop with PC

as a destination

(on armv7 can enter with ALU op with PC destination)

• Can use .thumb directive, .arm for 32-bit.

6

THUMB-2

• Extension of THUMB to have both 16-bit and 32-bit

instructions

• 32-bit instructions not standard 32-bit ARM instructions.

It’s a new encoding that allows an instruction to be 32-

bit if needed.

• Most 32-bit ARM instructions have 32-bit THUMB-2

equivalents except ones that use conditional execution.

The it instruction was added to handle this.

• rsc (reverse subtract with carry) removed

7

• Shifts in ALU instructions are by constant, cannot shift

by register like in arm32

• THUMB-2 code can assemble to either ARM-32 or

THUMB2

The assembly language is compatible.

Common code can be written and output changed at

time of assembly.

• Instructions have “wide” and “narrow” encoding.

Can force this (add.w vs add.n).

• Need to properly indicate “s” (set flags).

On regular THUMB this is assumed.

8

THUMB-2 Coding

• See test thumb2.s

• Use .syntax unified at beginning of code

• Use .arm or .thumb to specify mode

9

New THUMB-2 Instructions

• BFI – bit field insert

• RBIT – reverse bits

• movw/movt – 16 bit immediate loads

• TB – table branch

• IT (if/then)

• cbz – compare and branch if zero; only jumps forward

10

Thumb-2 12-bit immediates

top 4 bits 0000 -- 00000000 00000000 00000000 abcdefgh

0001 -- 00000000 abcdefgh 00000000 abcdefgh

0010 -- abcdefgh 00000000 abcdefgh 00000000

0011 -- abcdefgh abcdefgh abcdefgh abcdefgh

0100 -- 1bcdedfh 00000000 00000000 00000000

...

1111 -- 00000000 00000000 00000001 bcdefgh0

11

Compiler

• RASPBERRY PI DOES NOT SUPPORT THUMB2

• gcc -S hello world.c

By default is arm32

• gcc -S -march=armv5t -mthumb hello world.c

Creates THUMB (won’t work on Rapberry Pi due to

HARDFP arch)

• -mthumb -march=armv7-a Creates THUMB2

12

IT (If/Then) Instruction

• Allows limited conditional execution in THUMB-2 mode.

• The directive is optional (and ignored in ARM32)

the assembler can (in-theory) auto-generate the IT

instruction

• Limit of 4 instructions

13

Example Code

it cc

addcc r1,r2

itete cc

addcc r1,r2

addcs r1,r2

addcc r1,r2

addcs r1,r2

14

ll Example Code

ittt cs @ If CS Then Next plus CS for next 3

discrete_char:

ldrbcs r4,[r3] @ load a byte

addcs r3,#1 @ increment pointer

movcs r6,#1 @ we set r6 to one so byte

bcs.n store_byte @ and store it

offset_length:

15

AARCH64

• 32-bit fixed instruction encoding

• 31 64-bit GP registers (x0-x30), zero register (x30)

• PC is not a GP register

• only branches conditional

• no load/store multiple

• No thumb

16

Code Density

• Overview from my ll ICCD’09 paper

• Show code density for variety of architectures, recently

added Thumb-2 support.

• Shows overall size, though not a fair comparison due to

operating system differences on non-Linux machines

17

Code Density – overall

ia
64

al
ph

a

R
iS

C

pa
-ri

sc

sp
ar

c

m
ic
ro

bl
az

e
m

ip
s

m
88

k

ar
m

.e
ab

i

Pow
er

PC
65

02

ar
m

64
s3

90

x8
6_

64

x8
6_

x3
2

sh
3

m
68

k
i3
86 va

x

TH
U
M

B

Thu
m

b-
2

av
r3

2

cr
is
v3

2
z8

0

pd
p-

11
80

86
0

512

1024

1536

2048

2560

3072

b
y
te

s

VLIW
RISC
CISC
embedded
8/16-bit

18

lzss compression

• Printing routine uses lzss compression

• Might be more representative of potential code density

19

Code Density – lzss

R
iS

C
ia
64

al
ph

a

pa
-ri

sc
m

ip
s

sp
ar

c

m
ic
ro

bl
az

e
65

02

m
88

k
s3

90

ar
m

.e
ab

i

Pow
er

PC

pd
p-

11 z8
0

ar
m

64

m
68

k

av
r3

2
sh

3

TH
U
M

B

Thu
m

b-
2

va
x

x8
6_

64

x8
6_

x3
2

cr
is
v3

2
i3
86

80
86

0

64

128

192

256

320

384

b
y
te

s

VLIW
RISC
CISC
embedded
8/16-bit

20

Low-Level ARM Linux Assembly

21

Kernel Programming ABIs

• OABI – “old” original ABI (arm). Being phased out.

slightly different syscall mechanism, different alignment

restrictions

• EABI – new “embedded” ABI (armel)

• hard float – EABI compiled with ARMv7 and VFP

(vector floating point) support (armhf). Raspberry Pi

(raspbian) is compiled for ARMv6 armhf.

22

System Calls (EABI)

• System call number in r7

• Arguments in r0 - r6

• Call swi 0x0

• System call numbers can be found in

/usr/include/arm-linux-gnueabihf/asm/unistd.h

They are similar to the 32-bit x86 ones.

23

System Calls (OABI)

The previous implementation had the same system call

numbers, but instead of r7 the number was the argument

to swi. This was very slow, as there is no way to

determine that value without having the kernel backtrace

the callstack and disassemble the instruction.

24

Manpage

The easiest place to get system call documentation.

man open 2

Finds the documentation for “open”. The 2 means look

for system call documentation (which is type 2).

25

A first ARM assembly program: hello exit

.equ SYSCALL_EXIT , 1

.globl _start

_start:

#================================

Exit

#================================

exit:

mov r0 ,#5

mov r7 ,# SYSCALL_EXIT @ put exit syscall number (1) in eax

swi 0x0 @ and exit

26

hello exit example

Assembling/Linking using make, running, and checking the

output.

lecture6$ make hello_exit_arm

as -o hello_exit_arm.o hello_exit_arm.s

ld -o hello_exit_arm hello_exit_arm.o

lecture6$./hello_exit_arm

lecture6$ echo $?

5

27

Assembly

• @ is the comment character. # can be used on line

by itself but will confuse assembler if on line with code.

Can also use /* */

• Order is source, destination

• Constant value indicated by # or $

28

Let’s look at our executable

• ls -la ./hello exit arm

Check the size

• readelf -a ./hello exit arm

Look at the ELF executable layout

• objdump --disassemble-all ./hello exit arm

See the machine code we generated

• strace ./hello exit arm

Trace the system calls as they happen.

29

hello world example
.equ SYSCALL_EXIT , 1

.equ SYSCALL_WRITE , 4

.equ STDOUT , 1

.globl _start

_start:

mov r0 ,# STDOUT /* stdout */

ldr r1 ,= hello

mov r2 ,#13 @ length

mov r7 ,# SYSCALL_WRITE

swi 0x0

Exit

exit:

mov r0 ,#5

mov r7 ,# SYSCALL_EXIT @ put exit syscall number in r7

swi 0x0 @ and exit

.data

hello: .ascii "Hello World !\n"

30

New things to note in hello world

• The fixed-length 32-bit ARM cannot hold a full 32-bit

immediate

• Therefore a 32-bit address cannot be loaded in a single

instruction

• In this case the “=” is used to request the address

be stored in a “literal” pool which can be reached by

PC-offset, with an extra layer of indirection.

31

Put string example

.equ SYSCALL_EXIT , 1

.equ SYSCALL_WRITE , 4

.equ STDOUT , 1

.globl _start

_start:

ldr r1 ,= hello

bl print_string @ Print Hello World

ldr r1 ,= mystery

bl print_string @

ldr r1 ,= goodbye

bl print_string /* Print Goodbye */

#================================

Exit

#================================

exit:

mov r0 ,#5

mov r7 ,# SYSCALL_EXIT @ put exit syscall number (1) in eax

swi 0x0 @ and exit

32

#====================

print string

#====================

Null -terminated string to print pointed to by r1

r1 is trashed by this routine

print_string:

push {r0 ,r2 ,r7 ,r10} @ Save r0 ,r2 ,r7 ,r10 on stack

mov r2 ,#0 @ Clear Count

count_loop:

add r2 ,r2 ,#1 @ increment count

ldrb r10 ,[r1 ,r2] @ load byte from address r1+r2

cmp r10 ,#0 @ Compare against 0

bne count_loop @ if not 0, loop

mov r0 ,# STDOUT @ Print to stdout

mov r7 ,# SYSCALL_WRITE @ Load syscall number

swi 0x0 @ System call

pop {r0 ,r2 ,r7 ,r10} @ pop r0 ,r2 ,r7 ,r10 from stack

mov pc ,lr @ Return to address stored in

33

@ Link register

.data

hello: .string "Hello World !\n" @ includes null at end

mystery: .byte 63,0x3f ,63,10,0 @ mystery string

goodbye: .string "Goodbye !\n" @ includes null at end

34

Clarification of Assembler Syntax

• @ is the comment character. # can be used on line

by itself but will confuse assembler if on line with code.

Can also use /* */

• Constant value indicated by # or $

• Optionally put % in front of register name

35

