
ECE 471 – Embedded Systems
Lecture 14

Vince Weaver

http://www.eece.maine.edu/∼vweaver
vincent.weaver@maine.edu

21 October 2014



Announcements

• HW#6 is out

reboot after using i2c (i.e. running hw5 code)

how to set high an i2c bus

• HW#5 grades posted

code comments?

• Project Overview

• Midterm review

1



Computer Security
and why it matters for embedded systems

• Most effective security is being unconnected from the

world and locked away in a box. Until recently most

embedded systems matched that.

• Modern embedded systems are increasingly connected

to networks, etc. Embedded code is not necessarily

prepared for this.

2



The Problem

• Untrusted inputs from user can be hostile.

• Users with physical access can bypass most software

security.

3



What can an attacker gain?

• Fun / Mischief

• Profit

• A network of servers that can be used for illicit purposes

(SPAM, Warez, DDOS)

• Spying on others (companies, governments, etc)

4



Sources of Attack

• Untrusted user input

Web page forms

Keyboard Input

• USB Keys (CD-ROMs)

Autorun/Autostart on Windows

Scatter usb keys around parking lot, helpful people plug

into machine.

• Network

5



cellphone modems

ethernet/internet

wireless/bluetooth

• Backdoors

Debugging or Malicious, left in place

• Brute Force – trying all possible usernames/passwords

6



Types of Compromise

• Crash

“ping of death”

• DoS (Denial of Service)

• User account compromise

• Root account compromise

• Privilege Escalation

7



• Rootkit

• Re-write firmware? VM? Above OS?

8



Unsanitized Inputs

• Using values from users directly can be a problem if

passed directly to another process

• SQL injection attacks; escape characters can turn a

command into two, letting user execute arbitrary SQL

commands

• If data (say from a web-form) directly passed to a UNIX

shell script, then by including characters like ; can issue

arbitrary commands

9



Buffer Overflows

• User (accidentally or on purpose) copies too much data

into a fixed sized buffer.

• Data outside expected area gets over-written. This can

cause a crash (best case) or if user carefully constructs

code, can lead to user taking over program.

10



Buffer Overflow Example
void function(int *values , int size) {

int a[10];

memcpy(a,values ,size);

return;

}

Maps to
push {lr}

sub sp ,#44

memcpy

add sp ,#44

pop {pc}

11



a[0]

a[1]

a[2]

a[3]

a[4]

a[6]

a[5]

a[7]

a[8]

a[9]

link register

Stack pointer before entry

Stack pointer after prolog

A value written to a[11] overwrites the saved link register.

If you can put a pointer to a function of your choice there

you can hijack the code execution, as it will be jumped to

at function exit.

12



Mitigating Buffer Overflows

• Extra Bounds Checking / High-level Language (not C)

• Address Space Layout Randomization

• Putting lots of 0s in code (if strcpy is causing the

problem)

• Running in a “sandbox”

13



Dangling Pointer / Null Pointer
Dereference

• Typically a NULL pointer access generates a segfault

• If an un-initialized function pointer points there, and

gets called, it will crash. But until recently Linux allowed

users to mmap() code there, allowing exploits.

• Other dangling pointers (pointers to invalid addresses)

can also be used to cause problems. Both writes and

executions can cause problems if the address pointed to

14



can be mapped.

15



Privilege Escalation

• If you can get kernel or super-user (root) code to jump

to your code, then you can raise privileges and have a

“root exploit”

• If a kernel has a buffer-overrun or other type of error and

branches to code you control, all bets are off. You can

have what is called “shell code” generate a root shell.

• Some binaries are setuid. They run with root privilege

but drop them. If you can make them run your code

16



before dropping privilege you can also have a root exploit.

Tools such as ping (requires root to open raw socket),

X11 (needs root to access graphics cards), web-server

(needs root to open port 80).

17



Finding Bugs

• Source code inspection

• Watching mailing lists

• Static checkers (coverity, sparse)

• Dynamic checkers (Valgrind). Can be slow.

• Fuzzing

18


