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Announcements

• HW7 will be posted tonight
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HW6 Results

• Delayed due to lack of people in class
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SPI bus on Linux

• modprobe spidev

• modprobe spi-bcm2708

• dmesg | grep spi
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SPI dev interface

• https://www.kernel.org/doc/Documentation/spi/spidev

• /dev/spidevB.C (B=bus, C=slave number).

On pi it is /dev/spidev0.0

• Other useful info in /sys/devices/.../spiB.C,

/sys/class/spidev/spidevB.C

• To open the device, do something like the following

spi fd=open("/dev/spidev0.0",O RDWR);
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• To set the write mode, use ioctl:
int mode=SPI_MODE_0;

result = ioctl(spi_fd , SPI_IOC_WR_MODE , &mode);

Modes can be SPI MODE 0 through 3, or else you can

build them out of SPI CPOL and SPI CPHA values.

Current mode can be read back with SPI IOC RD MODE

• To set the bit order, use ioctl:
int lsb_mode =0;

result = ioctl(spi_fd , SPI_IOC_WR_LSB_FIRST , &lsb_mode );

Current can be read with SPI IOC RD LSB FIRST

Get/Set if MSB is first (common) or LSB is first.

Empty bits padded to left with zeros no matter what the
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setting.

• ioctl SPI IOC RD BITS PER WORD, SPI IOC WR BITS PER WORD

Number of bits in each transfer word. Default (0) is 8

bits.

• ioctl SPI IOC RD MAX SPEED HZ, SPI IOC WR MAX SPEED HZ

Set the maximum clock speed.

• By default using read() or write() on the device node

will only do half-duplex.

• For full duplex support you need something like the
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following:
#define LENGTH 3

int result;

struct spi_ioc_transfer spi;

unsigned char data_out[LENGTH ]={0x1 ,0x2 ,0x3};

unsigned char data_in[LENGTH ];

/* Setup full -duplex transfer of 3 bytes */

spi.tx_buf = (unsigned long)& data_out;

spi.rx_buf = (unsigned long)& data_in;

spi.len = LENGTH;

spi.delay_usecs = 0 ;

spi.speed_hz = 100000 ;

spi.bits_per_word = 8 ;

spi.cs_change = 0 ;

/* Run one full -duplex transaction */

result = ioctl(spi_fd , SPI_IOC_MESSAGE (1)), &spi) ;
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Analog Digital Converters on Raspberry PI

• Unlike many other embedded boards, the Pi has no A/D

converters built in.

• You’re stuck using SPI or i2c devices
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MCP3008

• For HW#7 we’ll use the MCP3008 8-port 12-bit SPI

A/D converter

• up to 100ksp (samples per second)

• Returns 10-bits of accuracy

• 8 single-ended inputs (vs ground) or 4 “pseudo-

differential” inputs (vs each other)

• Config sent in each request packet
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• Clock frequency must be long enough that the A/D has

time to convert

• VIN = value×VREF
1024

• Send a 1 as a start bit

• Send a SGL (1) /DIFF (0) bit if single or differential

mode

• Send 3 bits indicating channel

• Wait 1 more cycle
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• Will respond with 0, then 10 bits of sample, then 0s

forever until stop clocking
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MCP3008 µcontroller mode

• Datasheet describes way to easily use from a device

• Send 3 bytes. First has value ‘1’ (the start bit). The

second has the top 4 bits being single/diff followed by

3 bits of which channel you want. The rest is all 0s for

padding.

• You read back 3 bytes. First 13 bits are don’t care

(ignore) followed by 0 then the 10 bits of sample.

• XXXXXXXX XXXXX098 76543210
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TMP36

• Linear temperature sensor

• The temperature can be determined with the following

equation:

deg C = (100× voltage)− 50

• Also the following might be useful:

deg F = (deg C × 9
5) + 32

• Be careful hooking up! If vdd/gnd switched it heats up

to scalding temperatures (the datasheet lists the pinout
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from the bottom). If you catch it in time doesn’t seem

to be permanently damaged.
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Floating Point in C

• Converting int to floating point:

int value =45;

double temp;

temp=value; // works

temp=( float)value; // casts make the conversion explicit

// but can potentially hide bugs

• float vs double

float is 32-bit, double 64-bit

• Constants 9/5 vs 9.0/5.0
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The first is an integer so just “1”. Second is expected

1.8.

• Printing. First prints a double. Second prints a double

with only 2 digits after decimal.
printf("%lf\n",temp);

printf("%.2lf\n",temp);
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