
ECE 471 – Embedded Systems
Lecture 16

Vince Weaver

http://www.eece.maine.edu/∼vweaver
vincent.weaver@maine.edu

30 October 2014

Announcements

• HW7 will be posted tonight

1

HW6 Results

• Delayed due to lack of people in class

2

SPI bus on Linux

• modprobe spidev

• modprobe spi-bcm2708

• dmesg | grep spi

3

SPI dev interface

• https://www.kernel.org/doc/Documentation/spi/spidev

• /dev/spidevB.C (B=bus, C=slave number).

On pi it is /dev/spidev0.0

• Other useful info in /sys/devices/.../spiB.C,

/sys/class/spidev/spidevB.C

• To open the device, do something like the following

spi fd=open("/dev/spidev0.0",O RDWR);

4

• To set the write mode, use ioctl:
int mode=SPI_MODE_0;

result = ioctl(spi_fd , SPI_IOC_WR_MODE , &mode);

Modes can be SPI MODE 0 through 3, or else you can

build them out of SPI CPOL and SPI CPHA values.

Current mode can be read back with SPI IOC RD MODE

• To set the bit order, use ioctl:
int lsb_mode =0;

result = ioctl(spi_fd , SPI_IOC_WR_LSB_FIRST , &lsb_mode);

Current can be read with SPI IOC RD LSB FIRST

Get/Set if MSB is first (common) or LSB is first.

Empty bits padded to left with zeros no matter what the

5

setting.

• ioctl SPI IOC RD BITS PER WORD, SPI IOC WR BITS PER WORD

Number of bits in each transfer word. Default (0) is 8

bits.

• ioctl SPI IOC RD MAX SPEED HZ, SPI IOC WR MAX SPEED HZ

Set the maximum clock speed.

• By default using read() or write() on the device node

will only do half-duplex.

• For full duplex support you need something like the

6

following:
#define LENGTH 3

int result;

struct spi_ioc_transfer spi;

unsigned char data_out[LENGTH]={0x1 ,0x2 ,0x3};

unsigned char data_in[LENGTH];

/* Setup full -duplex transfer of 3 bytes */

spi.tx_buf = (unsigned long)& data_out;

spi.rx_buf = (unsigned long)& data_in;

spi.len = LENGTH;

spi.delay_usecs = 0 ;

spi.speed_hz = 100000 ;

spi.bits_per_word = 8 ;

spi.cs_change = 0 ;

/* Run one full -duplex transaction */

result = ioctl(spi_fd , SPI_IOC_MESSAGE (1)), &spi) ;

7

Analog Digital Converters on Raspberry PI

• Unlike many other embedded boards, the Pi has no A/D

converters built in.

• You’re stuck using SPI or i2c devices

8

MCP3008

• For HW#7 we’ll use the MCP3008 8-port 12-bit SPI

A/D converter

• up to 100ksp (samples per second)

• Returns 10-bits of accuracy

• 8 single-ended inputs (vs ground) or 4 “pseudo-

differential” inputs (vs each other)

• Config sent in each request packet

9

• Clock frequency must be long enough that the A/D has

time to convert

• VIN = value×VREF
1024

• Send a 1 as a start bit

• Send a SGL (1) /DIFF (0) bit if single or differential

mode

• Send 3 bits indicating channel

• Wait 1 more cycle

10

• Will respond with 0, then 10 bits of sample, then 0s

forever until stop clocking

11

MCP3008 µcontroller mode

• Datasheet describes way to easily use from a device

• Send 3 bytes. First has value ‘1’ (the start bit). The

second has the top 4 bits being single/diff followed by

3 bits of which channel you want. The rest is all 0s for

padding.

• You read back 3 bytes. First 13 bits are don’t care

(ignore) followed by 0 then the 10 bits of sample.

• XXXXXXXX XXXXX098 76543210

12

TMP36

• Linear temperature sensor

• The temperature can be determined with the following

equation:

deg C = (100× voltage)− 50

• Also the following might be useful:

deg F = (deg C × 9
5) + 32

• Be careful hooking up! If vdd/gnd switched it heats up

to scalding temperatures (the datasheet lists the pinout

13

from the bottom). If you catch it in time doesn’t seem

to be permanently damaged.

14

Floating Point in C

• Converting int to floating point:

int value =45;

double temp;

temp=value; // works

temp=(float)value; // casts make the conversion explicit

// but can potentially hide bugs

• float vs double

float is 32-bit, double 64-bit

• Constants 9/5 vs 9.0/5.0

15

The first is an integer so just “1”. Second is expected

1.8.

• Printing. First prints a double. Second prints a double

with only 2 digits after decimal.
printf("%lf\n",temp);

printf("%.2lf\n",temp);

16

