
ECE471: Embedded Systems – Homework 11
Power/Performance

Due: Thursday, 8 December 2016, 9:30am EST

Power and Energy

Table 1: OpenBLAS HPL N=10000 (Matrix Multiply)
Machine Processor Cores Frequency Idle Power Load Power Time Total Energy

Raspberry Pi 2 Cortex-A7 4 900MHz 1.8W 3.4W 454s 1543J
Dragonboard Cortex-A53 4 1.2GHz 2.4W 4.7W 241s 1133J

Raspberry Pi 3 Cortex-A53 4 1.2GHz 1.8W 4.3W 178s 765J
Jetson-TX1 Cortex-A57 4 1.9GHz 2.1W 13.4W 47s 629J

Macbook Air Broadwell 2 1.6GHz 10.0W 29.1W 14s 407J

1. Table 1 shows the energy use of various machines when doing a large Matrix-Matrix multiply.

(a) Which machine has the lowest under-load power draw?
Pi 2

(b) Which machine consumes the least amount of energy?
Broadwell Macbook Air

(c) Which machine computes the result fastest?
Broadwell Macbook Air

2. Consider a use case with an embedded board taking a picture once every 60 seconds and then perform-
ing a matrix-multiply similar to the one in the benchmark (perhaps for image-recognition purposes).
Could all of the boards listed meet this deadline?
No, only the Jetson and Macbook Air can meet the deadline

3. Assume a workload where a device takes a picture once a minute then does a large matrix multiply (as
seen in Table 1). The device is idle when not multiplying, but under full load when it is.

(a) Over an hour, what is the total energy usage of the Jetson TX-1?
Each Minute = (13s Idle * 2.1W) + (47s Load *13.4W) = 657J
Each hour = 60*657 = 39,426J

(b) Over an hour, what is the total energy usage of the Macbook Air?
Each Minute = (46s * 10W) + (14*29.1) = 867J
Each hour = 867*60 = 52,044J

4. Given your answer in the previous question, which device would you choose if you were running this
project off of a battery?

Jetson-TX1. In general the lowest energy will lead to best battery life, although this can be complicated
depending on the battery’s characteristics and the device’s peak power draw



Performance

Raspberry Pi Model 2 results, no Optimization

$ perf stat -e instructions,cycles,L1-dcache-load-misses,branch-misses \
./dgemm_naive 250
Will need 2000000 bytes of memory, Iterating 10 times

Performance counter stats for ’./dgemm_naive 250’:

5,042,022,526 instructions # 0.48 insns per cycle
10,414,207,828 cycles

38,943,964 L1-dcache-load-misses
1,234,120 branch-misses

11.639344013 seconds time elapsed

Raspberry Pi Model 2 results, -O2 Optimization

$ perf stat -e instructions,cycles,L1-dcache-load-misses,branch-misses \
./dgemm_naive.O2 250
Will need 2000000 bytes of memory, Iterating 10 times

Performance counter stats for ’./dgemm_naive.O2 250’:

1,049,408,721 instructions # 0.38 insns per cycle
2,779,835,783 cycles

43,771,532 L1-dcache-load-misses
780,467 branch-misses

3.123459828 seconds time elapsed

5. Performance questions

You are running a matrix-multiply benchmark on pi2 with no optimizations and you obtain the perf
results at the top. Your friend recommends compiling with the -O2 compiler flag and you obtain the
results on the bottom.

(a) Which is faster, none or O2 optimization?
-O2 is faster at 3s

(b) How many instructions were executed in none vs O2?
none: 5 Billion, O2: 1 Billion

(c) Some metrics, such as IPC and cache misses, are actually worse in the optimized code. How
can these be worse yet the program still runs faster? Despite IPC being lower (worse) and cache
misses being higher (worse) the program ran around 4x faster. Most of this is probably due
to executing 5x fewer instructions. Non-optimized code often does a lot of redundant things
(especially redundant memory accesses), so even just using -O2 optimization can make a big
difference.

2


