ECE471: Embedded Systems — Homework 7
SPI, A/D and Temperature Probe

Due: Thursday, 27 October 2016, 9:30AM

1. Use your Raspberry Pi for this homework.
You will need an MCP3008 SPI A/D converter as well as a TMP36 temperature sensor (looks like a
transistor) that I handed out in class. If you missed class, you can stop by my office to pick these up.

You can view the datasheet for the MCP3008:
http://web.eece.maine.edu/~vweaver/classes/eced471_2014f/datasheets/MCP3008.pdf]

You can view the datasheet for the TMP36:
http://web.eece.maine.edu/~vweaver/classes/eced71_2014f/datasheets/TMP35_36_37.pdf

Pin1 Pin2

Pin1_Pin2

Figure 1: Location of header on Raspberry Pi Model B and B+/2/3

2. Get the MCP3008 providing values over SPI (3 points)
First wire up the SPI device to the Raspberry Pi. You can use Figure [[|and Table] for guidance.

(a) Put the MCP3008 on a breadboard and connect to your Pi:
i. Connect 3.3V on the Pito Vpp (pinl6) on the MCP3008.
Also connect 3.3V to Vigp (pinl5) on the MCP3008.

ii. Connect GND on the Pi to AGND (pin14) on the MCP3008.
Also connect GND to DGND (pin9) on the MCP3008.

iii. Connect SCLK on the Pi to CLK (pin13) on the MCP3008.
iv. Connect MOST on the Pito D;y (pinl1) on the MCP3008.

v. Connect MISO on the Pi to Doy (pinl2) on the MCP3008.
vi. Connect CEO on the Pi to C'S (pin10) on the MCP3008.

http://web.eece.maine.edu/~vweaver/classes/ece471_2014f/datasheets/MCP3008.pdf
http://web.eece.maine.edu/~vweaver/classes/ece471_2014f/datasheets/TMP35_36_37.pdf

Table 1: Raspberry Pi Header Pinout
D R
GPIO2 (SDA) | 3 | 4
GPIO3 (SCL) | 5 | 6
GPIO4 (1-wire) | 7 | 8 | GPIO14 (UART_TXD)
I GND 9 | 10 | GPIOI5 (UART_RXD)

GPIO17 | 11 | 12 | GPIO18 (PCM_CLK)
GPIO27 | 13 | 14
GPIO22 | 15 | 16 | GP1O23
18 | GPIO24
20
22 | GPIO25
24
26

ID_SD (EEPROM) | 27 | 28 | ID_SC (EEPROM)
GPIOS | 29

GPIO6 | 31 GPIO12

GPIO13 | 33

GPIO19 | 35 | 36 | GPIO16

GPIO26 | 37 | 38 | GP1IO20

EENGNDY 39 | 40 | GPIo2!

(b) For this first part, we will measure OV on CHO (pinl) and 3.3V on input CH1 (pin2). Hook up
power and ground to those pins on the MCP3008.

(c) Enable SPI support in Linux running on your Pi. This is a bit confusing as they have changed the
directions for this at least three times over the years.

e The best way to do this is to run the sudo raspi-config command, select “advanced
options”, select “spi” and then say “yes” that you want this enabled and “yes” you want to
load the module. After a reboot you should be mostly set.

e The old way of doing things was to manually load the driver, nodprobe spi-bcm2835.
The name has changed, so if you are running a really old version of Raspbian you might
need to run modprobe spi-bcm2708

(d) Once you have the bcm SPI driver loaded, you will also need to install the “spidev” module
which sets up the usermode spi interface that we use.
sudo modprobe spidev
You can have this loaded automatically at boot time by editing /et c/modules and putting:
spidev
In the file.
You can look at dmesg | grep spi to see if SPI support was found and enabled

(e) Modify the test_spi.c file to read values from the MCP3008 and print them to the screen.
See the classnotes for more details.

e Open the /dev/spidevO0. 0 file for read/write access.
e Use ioctl to set the mode to SPI_MODE_0

e Use ioct1 to set the bitsperword to 8.
e Use ioctl to set the max frequency to 100kHz.

e In an infinite loop, read the value of CHO and CH1 once a second and print the voltages to
the screen.

— As described in class use ioct1 to transmit 3 bytes:

* Be sure to clear out your transmit buffer with zeroes first (using memset or similar)
or you may get errors!

* Transmit three bytes, the first includes the start bit, the second says to use single-
ended mode and is followed by 3 bits indicating the channel to read. The rest of the
byte (and the next byte) should be 0.

* Receive 3 bytes. The first byte can be ignored, the bottom 2 bits of the second byte
are bits 9 and 8, and the third byte is the bottom 8 bits of the result.

— Put the 10 bits you receive into an integer, then use V;y = % to convert to a
floating-point voltage.

— CHO should be roughly OV and CH1 should be 3.3V.

(f) Be sure to comment your code and check for errors!

3.3V Vout GND

Figure 2: TMP36 Pinout

3. Hook up the TMP36 to the SPI device (3 points)

(a) Copy your test_spi.c file to display_temp.c

(b) Connect the TMP36 temperature probe to CH2.
Connect pinl (3.3V) of the TMP36 to 3.3V
Connect pin2 (Vout) of the TMP36 to CH2 on the MCP3008
Connect pin3 (GND) of the TMP36 to ground
WARNING! the datasheet shows the pins from the bottfom not the top. If you reverse the
power/ground settings on the chip it will quickly heat up to 100+ degrees and will possibly
be ruined! Follow the diagram in Figures [2]and you will be OK.

(c) Modify the code to print the current temperature as read by the probe, once a second. You can
print degrees C or F as per your preference, but make sure the units are displayed.

(d) The temperature can be determined with the following equation:
deg_C = (100 x voltage) — 50

(e) Also the following might be useful:
deg_F = (deg_C' x %) + 32
Beware of C floating point/decimal rules!

(f) Be sure to comment your code!

4. Something Cool (1 point)

Copy your code to temp_cool. c and modify it to do something cool. Describe what you did in the
READMEE file.

e Monitor the temperature, and after a while print the high/low temperatures recorded.

e Monitor the temperature and print a message if a temp is exceeded (for example, print a message
if someone touches the probe long enough to raise the temperature).

e Hook up the analog discovery board and plot one SPI transaction on the MOSI/MISO/CS0/CLK
lines. Send the plot in with your assignment.

e Note: Lab 9 involves displaying the temperature on the LED display so while it would be cool to
do that, you might as well wait a few weeks.

5. Questions (2 points)
Answer the following in the README file:

(a) You are designing an embedded system for a car that controls the anti-lock brakes. The specifi-
cation says that to work properly the brakes needed to start pulsing within 10ms. Would this be
a hard, firm, or soft real-time task? Why?

(b) You are designing another part of the car. The specification says that if you push the “tune”
button on the stereo that it should switch stations within 1s. Would this be a hard, firm, or soft
real-time task? Why?

(¢) You are working on the “info-tainment” system for the car, and it has a movie player for the
backseat. The specification calls for the video decoder to be able to maintain a framerate of
60Hz. Is this a hard, firm, or soft real-time task? Why?

(d) What is one advantage SPI has over i2c?

(e) The MCP3008 datasheet says:
“... the time between the end of the sample period and the time that all 10 data bits have been
clocked out must not exceed 1.2 ms (effective clock frequency of 10 kHz). Failure to meet this
criterion may introduce linearity errors into the conversion outside the rated specifications.”
Your boss asks you to talk an MCP3008 by bitbanging SPI via GPIO from regular Linux. How
might this be a problem?

6. Linux Fun (1 point)

Linux shells have what’s known as job control. This isn’t a question, but you can try it out and see
how it works. To suspend something, press Control-Z. So if you are editing code in nano, try pressing
Control-Z. It should bring you back to the prompt. To get back to nano again type £g. You can use
this to run make while editing and going back without losing your place. You can also use bg to
put programs running in the background, but be careful (you don’t want that to happen to nano for
example).

Linux has very useful devices under /dev besides the i2c and spi nodes.
(a) The firstis /dev/null. What happens if you pipe a command to it?
For example 1s > /dev/null?

(b) The nextis /dev/full. What happens if you pipe a command to it?
For example 1s > /dev/full?

(c) /dev/zero contains nothing but zeros. Why might that be useful?
(d) What do you think /dev/random contains?

7. Submitting your work

e Run make submit which will create a hw7_submit.tar.qgz file containing Makefile,
README, test_temp.c, temp_cool.cand display_temp.c.
You can verify the contents with tar —-tzvf hw7_submit.tar.gz

e c-mail the hw7_submit.tar.gz file to me by the homework deadline. Be sure to send the
proper file!

