
ECE 471 – Embedded Systems
Lecture 5

Vince Weaver

http://web.eece.maine.edu/~vweaver

vincent.weaver@maine.edu

13 September 2016

http://web.eece.maine.edu/~vweaver

Announcements

• HW#2 is due Thursday

• It is going OK?

1

Homework #1 Review

• Characteristics of embedded system: embedded inside,

resource constrained, dedicated purpose, real-time

• Cost is an interesting one. Something like a desktop

might be optimized for cost extremely, while a one-off

embedded system might not, and in fact might be over-

engineered (like a spaceprobe) because has to operate in

tough conditions.

• Interesting that some people didn’t think iPhone is

optimized for battery life

2

• Operating system? Can have an OS and still be

considered embedded.

• Be strong in your convictions!

• Embedded inside of? Not simply the SoC is inside,

as that’s always true. Usually means the device is

inside of something bigger, and controlling part of it.

Complicated. For example, Sandybridge chip in laptop

is not considered embedded, but the ARM processors in

the hard drive are.

Another example, if put a desktop inside an enclosure,

attach a money dispenser, and make an ATM, is it an

3

embedded system?

• Interesting question, is a Pi an embedded system?

Itself, probably not. If you hooked it up to something

(controlled the lights, robot, etc) then probably.

• Make sure realize difference between the embedded

system (the whole device) and the processor (SoC or

microcontroller)

• Phone has real time constraints? Know I didn’t explain

real-time well, later. Can meet deadlines. Yes, but on

which processor?

• iPhone – most said was *not* embedded system

4

iPhone7

• Microwave – all said was embedded system

• ARM1176JZF-S: Java, TrustZone, Vector Floating,

Synthesizable Jazelle = Java acceleration

This was in the class notes (which I post), and in ARMv6

documentation.

5

How Code Works

• Compiler generates ASM (Cross-compiler)

• Assembler generates machine language objects

• Linker creates Executable (out of objects)

6

Tools

• compiler: takes code, usually (but not always) generates

assembly

• assembler: GNU Assembler as (others: tasm, nasm,

masm, etc.)

creates object files

• linker: ld

creates executable files. resolves addresses of symbols.

shared libraries.

7

Converting Assembly to Machine Language

Thankfully the assembler does this for you.

ARM32 ADD instruction – 0xe0803080 == add r3,

r0, r0, lsl #1

ADD{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RmRd

RnS0 0 0cond Opcode

imm5
Shift

typ
Shift Sh

Reg

0 1 0 0

8

Executable Format

• ELF (Executable and Linkable Format, Extensible

Linking Format)

Default for Linux and some other similar OSes

header, then header table describing chunks and where

they go

• Other executable formats: a.out, COFF, binary blob

9

ELF Layout

ELF Header

Text (Machine Code)

Data (Initialized Data)

Program header

Symbols

Debugging Info

....

Section header

10

ELF Description

• ELF Header includes a “magic number” saying it’s

0x7f,ELF, architecture type, OS type, etc. Also location

of program header and section header and entry point.

• Program Header, used for execution:

has info telling the OS what parts to load, how, and

where (address, permission, size, alignment)

• Program Data follows, describes data actually loaded

into memory: machine code, initialized data

11

• Other data: things like symbol names, debugging info

(DWARF), etc.

DWARF backronym = “Debugging with Attributed

Record Formats”

• Section Header, used when linking:

has info on the additional segments in code that aren’t

loaded into memory, such as debugging, symbols, etc.

12

STM32L-Discovery Physical Memory
Layout

RAM

Peripheral Space

Flash

0xffff ffff

0x4000 0000

0x2000 0000 (16k)

0x0800 0000 (128k)

0x0000 0000

Start of code

....

NMI Vector

Reset Vector

Stack Pointer

13

Raspberry Pi Layout

0x1c00 0000

0xffff ffff

0x2100 0000

0x2000 0000

0x0000 0000

0x0000 0100

0x0000 8000

Our Operating

System

Invalid

Peripheral

Registers

GPU RAM

Unused RAM

System Stack

IRQ Stack

ATAGs

IRQ Vectors

(4GB)

(528MB)

(512MB)

(448MB)

(32k)

(256)

(16k)0x0000 4000

14

Linux Virtual Memory Map

Operating System
Stack

Operating System

0xffff ffff

Exexcutable Info

Environment Strings

0xbfff ffff

Cmd Line Arg Strings

Executable Name

Padding

Stack

Cmd Line Arg Count

Command Line Pointers

Environment Pointers

ELF Auxiliary Vectors

Text (Executable)

0x0804 8000

Data

BSS

Heap

mmap

vdso

Null Guard Page
0x0000 0000

shared libraries

15

Program Memory Layout on Linux

• Text: the program’s raw machine code

• Data: Initialized data

• BSS: uninitialized data; on Linux this is all set to 0.

• Heap: dynamic memory. malloc() (brk() syscall) and

C++ new(). Grows up.

• Stack: LIFO memory structure. Grows down.

16

Program Layout

• Kernel: is mapped into top of address space, for

performance reasons

• Command Line arguments, Environment, AUX vectors,

etc., available above stack

• For security reasons “ASLR” (Address Space Layout

Randomization) is often enabled. From run to run the

exact addresses of all the sections is randomized, to

make it harder for hackers to compromise your system.

17

Loader

• /lib/ld-linux.so.2

• loads the executable (handles linking in libraries, etc)

18

Static vs Dynamic Libraries

• Static: includes all code in one binary.

Large binaries, need to recompile to update library code,

self-contained, don’t have to worry about incompatible

updates

• Dynamic: library routines linked at load time.

Smaller binaries, share code across system, automatically

links against newer/bugfixes when system library updated

19

How a Program is Loaded

• Kernel Boots

• init started

• init calls fork() – makes an exact copy of itself

• child calls exec() – replaces itself with executable from

disk

• Kernel checks if valid ELF. Passes to loader

20

• Loader loads it. Clears out BSS. Sets up stack. Jumps

to entry address (specified by executable)

• Program runs until complete.

• Parent process returned to if waiting. Otherwise, init.

21

Assembly Language: What’s it good for?

• Understanding your computer at a low-level

• Shown when using a debugger

• It’s the eventual target of compilers

• Operating system writers (some things not expressible in

C)

• Embedded systems (code density)

• Research. Computer Architecture. Emulators/Simulators.

• Video games (or other perf critical routines, glibc, kernel,

etc.)

22

